TY - JOUR
T1 - The mutational constraint spectrum quantified from variation in 141,456 humans
AU - Genome Aggregation Database Consortium
AU - Karczewski, Konrad J.
AU - Francioli, Laurent C.
AU - Tiao, Grace
AU - Cummings, Beryl B.
AU - Alföldi, Jessica
AU - Wang, Qingbo
AU - Collins, Ryan L.
AU - Laricchia, Kristen M.
AU - Ganna, Andrea
AU - Birnbaum, Daniel P.
AU - Gauthier, Laura D.
AU - Brand, Harrison
AU - Solomonson, Matthew
AU - Watts, Nicholas A.
AU - Rhodes, Daniel
AU - Singer-Berk, Moriel
AU - England, Eleina M.
AU - Seaby, Eleanor G.
AU - Kosmicki, Jack A.
AU - Walters, Raymond K.
AU - Tashman, Katherine
AU - Farjoun, Yossi
AU - Banks, Eric
AU - Poterba, Timothy
AU - Wang, Arcturus
AU - Seed, Cotton
AU - Whiffin, Nicola
AU - Chong, Jessica X.
AU - Samocha, Kaitlin E.
AU - Pierce-Hoffman, Emma
AU - Zappala, Zachary
AU - O’Donnell-Luria, Anne H.
AU - Minikel, Eric Vallabh
AU - Weisburd, Ben
AU - Lek, Monkol
AU - Ware, James S.
AU - Vittal, Christopher
AU - Armean, Irina M.
AU - Bergelson, Louis
AU - Cibulskis, Kristian
AU - Connolly, Kristen M.
AU - Covarrubias, Miguel
AU - Donnelly, Stacey
AU - Ferriera, Steven
AU - Gabriel, Stacey
AU - Gentry, Jeff
AU - Gupta, Namrata
AU - Jeandet, Thibault
AU - Kaplan, Diane
AU - Turner, Dan
N1 - Publisher Copyright:
© 2020, The Author(s).
PY - 2020/5/28
Y1 - 2020/5/28
N2 - Genetic variants that inactivate protein-coding genes are a powerful source of information about the phenotypic consequences of gene disruption: genes that are crucial for the function of an organism will be depleted of such variants in natural populations, whereas non-essential genes will tolerate their accumulation. However, predicted loss-of-function variants are enriched for annotation errors, and tend to be found at extremely low frequencies, so their analysis requires careful variant annotation and very large sample sizes1. Here we describe the aggregation of 125,748 exomes and 15,708 genomes from human sequencing studies into the Genome Aggregation Database (gnomAD). We identify 443,769 high-confidence predicted loss-of-function variants in this cohort after filtering for artefacts caused by sequencing and annotation errors. Using an improved model of human mutation rates, we classify human protein-coding genes along a spectrum that represents tolerance to inactivation, validate this classification using data from model organisms and engineered human cells, and show that it can be used to improve the power of gene discovery for both common and rare diseases.
AB - Genetic variants that inactivate protein-coding genes are a powerful source of information about the phenotypic consequences of gene disruption: genes that are crucial for the function of an organism will be depleted of such variants in natural populations, whereas non-essential genes will tolerate their accumulation. However, predicted loss-of-function variants are enriched for annotation errors, and tend to be found at extremely low frequencies, so their analysis requires careful variant annotation and very large sample sizes1. Here we describe the aggregation of 125,748 exomes and 15,708 genomes from human sequencing studies into the Genome Aggregation Database (gnomAD). We identify 443,769 high-confidence predicted loss-of-function variants in this cohort after filtering for artefacts caused by sequencing and annotation errors. Using an improved model of human mutation rates, we classify human protein-coding genes along a spectrum that represents tolerance to inactivation, validate this classification using data from model organisms and engineered human cells, and show that it can be used to improve the power of gene discovery for both common and rare diseases.
UR - http://www.scopus.com/inward/record.url?scp=85085542423&partnerID=8YFLogxK
U2 - 10.1038/s41586-020-2308-7
DO - 10.1038/s41586-020-2308-7
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 32461654
AN - SCOPUS:85085542423
SN - 0028-0836
VL - 581
SP - 434
EP - 443
JO - Nature
JF - Nature
IS - 7809
ER -