Abstract
We study a game with strategic vendors (the agents) who own multiple items and a single buyer with a submodular valuation function. The goal of the vendors is to maximize their revenue via pricing of the items, given that the buyer will buy the set of items that maximizes his net payoff. We show this game may not always have a pure Nash equilibrium, in contrast to previous results for the special case where each vendor owns a single item. We do so by relating our game to an intermediate, discrete game in which the vendors only choose the available items, and their prices are set exogenously afterwards. We further make use of the intermediate game to provide tight bounds on the price of anarchy for the subset games that have pure Nash equilibria; we find that the optimal PoA reached in the previous special cases does not hold, but only a logarithmic one. Finally, we show that for a special case of submodular functions, efficient pure Nash equilibria always exist.
Original language | English |
---|---|
Title of host publication | Proceedings of the 29th AAAI Conference on Artificial Intelligence, AAAI 2015 and the 27th Innovative Applications of Artificial Intelligence Conference, IAAI 2015 |
Publisher | AI Access Foundation |
Pages | 972-978 |
Number of pages | 7 |
ISBN (Electronic) | 9781577357001 |
State | Published - 1 Jun 2015 |
Event | 29th AAAI Conference on Artificial Intelligence, AAAI 2015 and the 27th Innovative Applications of Artificial Intelligence Conference, IAAI 2015 - Austin, United States Duration: 25 Jan 2015 → 30 Jan 2015 |
Publication series
Name | Proceedings of the National Conference on Artificial Intelligence |
---|---|
Volume | 2 |
Conference
Conference | 29th AAAI Conference on Artificial Intelligence, AAAI 2015 and the 27th Innovative Applications of Artificial Intelligence Conference, IAAI 2015 |
---|---|
Country/Territory | United States |
City | Austin |
Period | 25/01/15 → 30/01/15 |
Bibliographical note
Publisher Copyright:Copyright © 2015, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.