The regulation of catalase activity by PPAR γ is affected by α-synuclein

Eugenia Yakunin, Haya Kisos, Willem Kulik, Jessica Grigoletto, Ronald J.A. Wanders, Ronit Sharon*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

35 Scopus citations

Abstract

Objective: While evidence for oxidative injury is frequently detected in brains of humans affected by Parkinson's disease (PD) and in relevant animal models, there is uncertainty regarding its cause. We tested the potential role of catalase in the oxidative injury that characterizes PD. Methods: Utilizing brains of A53T α-Syn and ntg mice, and cultured cells, we analyzed catalase activity and expression, and performed biochemical analyses of peroxisomal metabolites. Results: Lower catalase expression and lower activity levels were detected in A53T α-Syn brains and α-Syn-expressing cells. The effect on catalase activity was independent of disease progression, represented by mouse age and α-Syn mutation, suggesting a potential physiological function for α-Syn. Notably, catalase activity and expression were unaffected in brains of mice modeling Alzheimer's disease. Moreover, we found that α-Syn expression downregulate the peroxisome proliferator-activated receptor (PPAR)γ, which controls catalase transcription. Importantly, activation of either PPARγ2, PPARα or retinoic X receptor eliminated the inhibiting effect of α-Syn on catalase activity. In addition, activation of these nuclear receptors enhanced the accumulation of soluble α-Syn oligomers, resulting in a positive association between the degree of soluble α-Syn oligomers and catalase activity. Of note, a comprehensive biochemical analysis of specific peroxisomal metabolites indicated no signs of dysfunction in specific peroxisomal activities in brains of A53T α-Syn mice. Interpretation: Our results suggest that α-Syn expression may interfere with the complex and overlapping network of nuclear receptors transcription activation. In result, catalase activity is affected through mechanisms involved in the regulation of soluble α-Syn oligomers.

Original languageEnglish
Pages (from-to)145-159
Number of pages15
JournalAnnals of Clinical and Translational Neurology
Volume1
Issue number3
DOIs
StatePublished - Mar 2014

Bibliographical note

Publisher Copyright:
© 2014 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals, Inc on behalf of American Neurological Association.

Fingerprint

Dive into the research topics of 'The regulation of catalase activity by PPAR γ is affected by α-synuclein'. Together they form a unique fingerprint.

Cite this