The role of GLUT1 in the sugar-induced dielectric response of human erythrocytes

Leonid Livshits, Andreas Caduff, Mark S. Talary, Hans U. Lutz, Yoshihito Hayashi, Alexander Puzenko, Andrey Shendrik, Yuri Feldman*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

24 Scopus citations

Abstract

We propose a key role for the glucose transporter 1 (GLUT1) in mediating the observed changes in the dielectric properties of human erythrocyte membranes as determined by dielectric spectroscopy. Cytochalasin B, a GLUT1 transport inhibitor, abolished the membrane capacitance changes in glucose-exposed red cells. Surprisingly, D-fructose, known to be transported primarily by GLUT5, exerted similar membrane capacitance changes at increasing D-fructose concentrations. In order to evaluate whether the glucose-mediated membrane capacitance changes originated directly from intracellularly bound adenosine triphosphate (ATP) or other components of the glycolysis process, we studied the dielectric responses of swollen erythrocytes with a decreased ATP content and of nucleotide-filled ghosts. Resealed ghosts containing physiological concentrations of ATP yielded the same glucose-dependent capacitance changes as biconcave intact red blood cells, further supporting the finding that ATP is the effector of the glucose-mediated dielectric response where the ATP concentration is also the mediating factor in swollen red blood cells. The results suggest that ATP binding to GLUT1 elicits a membrane capacitance change that increases with the applied concentration gradient of D-glucose. A simplified model of the membrane capacitance alteration with glucose uptake is proposed.

Original languageAmerican English
Pages (from-to)2212-2220
Number of pages9
JournalJournal of Physical Chemistry B
Volume113
Issue number7
DOIs
StatePublished - 19 Feb 2009

Fingerprint

Dive into the research topics of 'The role of GLUT1 in the sugar-induced dielectric response of human erythrocytes'. Together they form a unique fingerprint.

Cite this