TY - JOUR
T1 - The secrets of a functional synapse - From a computational and experimental viewpoint
AU - Linial, Michal
PY - 2006/3/20
Y1 - 2006/3/20
N2 - Background: Neuronal communication is tightly regulated in time and in space. The neuronal transmission takes place in the nerve terminal, at a specialized structure called the synapse. Following neuronal activation, an electrical signal triggers neurotransmitter (NT) release at the active zone. The process starts by the signal reaching the synapse followed by a fusion of the synaptic vesicle and diffusion of the released NT in the synaptic cleft, the NT then binds to the appropriate receptor, and as a result, a potential change at the target cell membrane is induced. The entire process lasts for only a fraction of a millisecond. An essential property of the synapse is its capacity to undergo biochemical and morphological changes, a phenomenon that is referred to as synaptic plasticity. Results: In this survey, we consider the mammalian brain synapse as our model. We take a cell biological and a molecular perspective to present fundamental properties of the synapse:(i) the accurate and efficient delivery of organelles and material to and from the synapse; (ii) the coordination of gene expression that underlies a particular NT phenotype; (iii) the induction of local protein expression in a subset of stimulated synapses. We describe the computational facet and the formulation of the problem for each of these topics. Conclusion: Predicting the behavior of a synapse under changing conditions must incorporate genomics and proteomics information with new approaches in computational biology.
AB - Background: Neuronal communication is tightly regulated in time and in space. The neuronal transmission takes place in the nerve terminal, at a specialized structure called the synapse. Following neuronal activation, an electrical signal triggers neurotransmitter (NT) release at the active zone. The process starts by the signal reaching the synapse followed by a fusion of the synaptic vesicle and diffusion of the released NT in the synaptic cleft, the NT then binds to the appropriate receptor, and as a result, a potential change at the target cell membrane is induced. The entire process lasts for only a fraction of a millisecond. An essential property of the synapse is its capacity to undergo biochemical and morphological changes, a phenomenon that is referred to as synaptic plasticity. Results: In this survey, we consider the mammalian brain synapse as our model. We take a cell biological and a molecular perspective to present fundamental properties of the synapse:(i) the accurate and efficient delivery of organelles and material to and from the synapse; (ii) the coordination of gene expression that underlies a particular NT phenotype; (iii) the induction of local protein expression in a subset of stimulated synapses. We describe the computational facet and the formulation of the problem for each of these topics. Conclusion: Predicting the behavior of a synapse under changing conditions must incorporate genomics and proteomics information with new approaches in computational biology.
UR - http://www.scopus.com/inward/record.url?scp=33947308925&partnerID=8YFLogxK
U2 - 10.1186/1471-2105-7-S1-S6
DO - 10.1186/1471-2105-7-S1-S6
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.systematicreview???
C2 - 16723009
AN - SCOPUS:33947308925
SN - 1471-2105
VL - 7
JO - BMC Bioinformatics
JF - BMC Bioinformatics
IS - SUPPL.1
M1 - S6
ER -