Abstract
A method for obtaining energy levels of coupled vibrational modes is described, that utilizes a state-interaction approach combined with semiclassical approximations. The method starts with a semiclassical self-consistent-field calculation of the coupled problem, and uses the eigenstates of the resulting Hartree-like separable SCF vibrational hamiltonian to define a basis set of Hartree products in which the full vibrational hamiltonian is represented and diagonalized. Matrix elements of any interaction potential between single-mode states are approximated semiclassically as the Fourier component of the interaction at the frequency corresponding to the SCF eigenvalue difference. A Fourier-component expression can also be given for the overlap between non-orthogonal single mode states. Thus no wavefunctions ever need to be defined. Application to a sample two-mode problem shows that the method is highly accurate. Further possible applications, in particular to intramolecular rate calculations are noted.
Original language | English |
---|---|
Pages (from-to) | 345-356 |
Number of pages | 12 |
Journal | Chemical Physics |
Volume | 53 |
Issue number | 3 |
DOIs | |
State | Published - 1 Dec 1980 |