TY - JOUR
T1 - The sequence-directed bent structure in kinetoplast DNA is recognized by an enzyme from Crithidia fasciculata.
AU - Linial, M.
AU - Shlomai, J.
PY - 1987/11/5
Y1 - 1987/11/5
N2 - Crithidia fasciculata nicking enzyme (Shlomai, J., and Linial, M. (1986) J. Biol. Chem. 261, 16219-16225) interrupts a single phosphodiester bond in duplex DNA circles from various sources, only in their supercoiled form, but not following their relaxation by DNA topoisomerases. However, this requirement for DNA substrate supercoiling was not observed using the natural kinetoplast DNA as a substrate. Relaxed kinetoplast DNA minicircles, either free or topologically linked, were efficiently nicked by the enzyme. Furthermore, bacterial plasmids, containing a unit length kinetoplast DNA minicircle insert, were used as substrates for nicking in their relaxed form. This capacity to activate a relaxed DNA topoisomer as a substrate for nicking is an intrinsic property of the sequence-directed bend, naturally present in kinetoplast DNA. The 211-base pair fragment of the bent region from C. fasciculata kinetoplast DNA could support the nicking of a relaxed DNA substrate in a reaction dependent upon the DNA helix curvature.
AB - Crithidia fasciculata nicking enzyme (Shlomai, J., and Linial, M. (1986) J. Biol. Chem. 261, 16219-16225) interrupts a single phosphodiester bond in duplex DNA circles from various sources, only in their supercoiled form, but not following their relaxation by DNA topoisomerases. However, this requirement for DNA substrate supercoiling was not observed using the natural kinetoplast DNA as a substrate. Relaxed kinetoplast DNA minicircles, either free or topologically linked, were efficiently nicked by the enzyme. Furthermore, bacterial plasmids, containing a unit length kinetoplast DNA minicircle insert, were used as substrates for nicking in their relaxed form. This capacity to activate a relaxed DNA topoisomer as a substrate for nicking is an intrinsic property of the sequence-directed bend, naturally present in kinetoplast DNA. The 211-base pair fragment of the bent region from C. fasciculata kinetoplast DNA could support the nicking of a relaxed DNA substrate in a reaction dependent upon the DNA helix curvature.
UR - http://www.scopus.com/inward/record.url?scp=0023645813&partnerID=8YFLogxK
M3 - Article
C2 - 2822715
AN - SCOPUS:0023645813
SN - 0021-9258
VL - 262
SP - 15194
EP - 15201
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 31
ER -