The spectrum of the fractional Laplacian and first-passage-time statistics

E. Katzav*, M. Adda-Bedia

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

We present exact results for the spectrum of the fractional Laplacian in a bounded domain and apply them to First-Passage-Time (FPT) statistics of Lévy flights. We specifically show that the average is insufficient to describe the distribution of the FPT, although it is the only quantity available in the existing literature. In particular, we show that the FPT distribution is not peaked around the average, and that knowledge of the whole distribution is necessary to describe this phenomenon. For this purpose, we provide an efficient method to calculate higher-order cumulants and the whole distribution.

Original languageEnglish
Article number30006
JournalLettere Al Nuovo Cimento
Volume83
Issue number3
DOIs
StatePublished - 1 Aug 2008
Externally publishedYes

Fingerprint

Dive into the research topics of 'The spectrum of the fractional Laplacian and first-passage-time statistics'. Together they form a unique fingerprint.

Cite this