TY - JOUR
T1 - The statistical shape of geometric reasoning
AU - Hart, Yuval
AU - Dillon, Moira R.
AU - Marantan, Andrew
AU - Cardenas, Anna L.
AU - Spelke, Elizabeth
AU - Mahadevan, L.
N1 - Publisher Copyright:
© 2018, The Author(s).
PY - 2018/12/1
Y1 - 2018/12/1
N2 - Geometric reasoning has an inherent dissonance: its abstract axioms and propositions refer to perfect, idealized entities, whereas its use in the physical world relies on dynamic perception of objects. How do abstract Euclidean concepts, dynamics, and statistics come together to support our intuitive geometric reasoning? Here, we address this question using a simple geometric task – planar triangle completion. An analysis of the distribution of participants’ errors in localizing a fragmented triangle’s missing corner reveals scale-dependent deviations from a deterministic Euclidean representation of planar triangles. By considering the statistical physics of the process characterized via a correlated random walk with a natural length scale, we explain these results and further predict participants’ estimates of the missing angle, measured in a second task. Our model also predicts the results of a categorical reasoning task about changes in the triangle size and shape even when such completion strategies need not be invoked. Taken together, our findings suggest a critical role for noisy physical processes in our reasoning about elementary Euclidean geometry.
AB - Geometric reasoning has an inherent dissonance: its abstract axioms and propositions refer to perfect, idealized entities, whereas its use in the physical world relies on dynamic perception of objects. How do abstract Euclidean concepts, dynamics, and statistics come together to support our intuitive geometric reasoning? Here, we address this question using a simple geometric task – planar triangle completion. An analysis of the distribution of participants’ errors in localizing a fragmented triangle’s missing corner reveals scale-dependent deviations from a deterministic Euclidean representation of planar triangles. By considering the statistical physics of the process characterized via a correlated random walk with a natural length scale, we explain these results and further predict participants’ estimates of the missing angle, measured in a second task. Our model also predicts the results of a categorical reasoning task about changes in the triangle size and shape even when such completion strategies need not be invoked. Taken together, our findings suggest a critical role for noisy physical processes in our reasoning about elementary Euclidean geometry.
UR - http://www.scopus.com/inward/record.url?scp=85052285158&partnerID=8YFLogxK
U2 - 10.1038/s41598-018-30314-y
DO - 10.1038/s41598-018-30314-y
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 30150653
AN - SCOPUS:85052285158
SN - 2045-2322
VL - 8
JO - Scientific Reports
JF - Scientific Reports
IS - 1
M1 - 12906
ER -