The structure of ions and zwitterionic lipids regulates the charge of dipolar membranes

Or Szekely, Ariel Steiner, Pablo Szekely, Einav Amit, Roi Asor, Carmen Tamburu, Uri Raviv*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

68 Scopus citations

Abstract

In pure water, zwitterionic lipids form lamellar phases with an equilibrium water gap on the order of 2 to 3 nm as a result of the dominating van der Waals attraction between dipolar bilayers. Monovalent ions can swell those neutral lamellae by a small amount. Divalent ions can adsorb onto dipolar membranes and charge them. Using solution X-ray scattering, we studied how the structure of ions and zwitterionic lipids regulates the charge of dipolar membranes. We found that unlike monovalent ions that weakly interact with all of the examined dipolar membranes, divalent and trivalent ions adsorb onto membranes containing lipids with saturated tails, with an association constant on the order of ∼10 M-1. One double bond in the lipid tail is sufficient to prevent divalent ion adsorption. We suggest that this behavior is due to the relatively loose packing of lipids with unsaturated tails that increases the area per lipid headgroup, enabling their free rotation. Divalent ion adsorption links two lipids and limits their free rotation. The ion-dipole interaction gained by the adsorption of the ions onto unsaturated membranes is insufficient to compensate for the loss of headgroup free-rotational entropy. The ion-dipole interaction is stronger for cations with a higher valence. Nevertheless, polyamines behave as monovalent ions near dipolar interfaces in the sense that they interact weakly with the membrane surface, whereas in the bulk their behavior is similar to that of multivalent cations. Advanced data analysis and comparison with theory provide insight into the structure and interactions between ion-induced regulated charged interfaces. This study models biologically relevant interactions between cell membranes and various ions and the manner in which the lipid structure governs those interactions. The ability to monitor these interactions creates a tool for probing systems that are more complex and forms the basis for controlling the interactions between dipolar membranes and charged proteins or biopolymers for encapsulation and delivery applications.

Original languageEnglish
Pages (from-to)7419-7438
Number of pages20
JournalLangmuir
Volume27
Issue number12
DOIs
StatePublished - 21 Jun 2011

Fingerprint

Dive into the research topics of 'The structure of ions and zwitterionic lipids regulates the charge of dipolar membranes'. Together they form a unique fingerprint.

Cite this