TY - JOUR
T1 - The teratogenicity and behavioral teratogenicity of di(2-ethylhexyl) phthalate (DEHP) and di-butyl Phthalate (DBP) in a chick model
AU - Abdul-Ghani, Safa
AU - Yanai, Joseph
AU - Abdul-Ghani, Rula
AU - Pinkas, Adi
AU - Abdeen, Ziad
PY - 2012/1
Y1 - 2012/1
N2 - Phthalates are industrial chemicals widely used in consumer products, plastics and children toys, and the risk of exposure to phthalates, especially prenatal exposure, is a growing concern justifying the development of an animal model to better understand their effect. The present study was designed to evaluate the suitability of a chick model for phthalate DEHP teratogenicity and neurobehavioral teratogenicity, a model which is simple and devoid of potential confounding factors such as maternal toxicity, maternal-fetal unit and maternal-neonatal interactions; major findings were confirmed in the DBP study. Prehatch exposure to DEHP in doses ranging from 20 to 100. mg/kg, reduced the percent hatching from 80% in control eggs to 65%, and increased late hatchings from 12.5% in control eggs to 29.4%. In addition it induced developmental defects characterized by an opening or weakening of abdominal muscles allowing internal organs to protrude externally with or without a sac, omphalocele or gastroschisis, respectively. The effect was dose dependent ranging from 8% with DEHP (20. mg/kg) to 22% (100. mg/kg). Similar treatment with DBP 100. mg/kg has reduced percentage hatching to 57% and increased late hatching to 37.5%, with a 14% increase in gastroschisis. Biochemical evaluation revealed elevated levels of alkaline phosphatase, which reflects non-specific toxicity of DEHP at such a high dose. Behavioral evaluation using an imprinting test and locomotor activity on chicks pretreated with DEHP (100. mg/kg) has shown an abolishment of imprinting performance from the control (0.65) preference ratio. DNA damage measurements of the metabolite 8-hydroxydeoxyguanosine (8-OH-dG) in blood samples showed an increase of 39.7% after prehatch exposure to phthalates. This was statistically significant for DEHP and indicates genetic toxicity, since part of the teratogenic activity is associated with oxidative stress and DNA damage.
AB - Phthalates are industrial chemicals widely used in consumer products, plastics and children toys, and the risk of exposure to phthalates, especially prenatal exposure, is a growing concern justifying the development of an animal model to better understand their effect. The present study was designed to evaluate the suitability of a chick model for phthalate DEHP teratogenicity and neurobehavioral teratogenicity, a model which is simple and devoid of potential confounding factors such as maternal toxicity, maternal-fetal unit and maternal-neonatal interactions; major findings were confirmed in the DBP study. Prehatch exposure to DEHP in doses ranging from 20 to 100. mg/kg, reduced the percent hatching from 80% in control eggs to 65%, and increased late hatchings from 12.5% in control eggs to 29.4%. In addition it induced developmental defects characterized by an opening or weakening of abdominal muscles allowing internal organs to protrude externally with or without a sac, omphalocele or gastroschisis, respectively. The effect was dose dependent ranging from 8% with DEHP (20. mg/kg) to 22% (100. mg/kg). Similar treatment with DBP 100. mg/kg has reduced percentage hatching to 57% and increased late hatching to 37.5%, with a 14% increase in gastroschisis. Biochemical evaluation revealed elevated levels of alkaline phosphatase, which reflects non-specific toxicity of DEHP at such a high dose. Behavioral evaluation using an imprinting test and locomotor activity on chicks pretreated with DEHP (100. mg/kg) has shown an abolishment of imprinting performance from the control (0.65) preference ratio. DNA damage measurements of the metabolite 8-hydroxydeoxyguanosine (8-OH-dG) in blood samples showed an increase of 39.7% after prehatch exposure to phthalates. This was statistically significant for DEHP and indicates genetic toxicity, since part of the teratogenic activity is associated with oxidative stress and DNA damage.
KW - DNA damage
KW - Embryonic development
KW - Gastroschisis
KW - Neurobehavioral teratogenicity
KW - Omphalocele
KW - Phthalates
UR - http://www.scopus.com/inward/record.url?scp=82655189525&partnerID=8YFLogxK
U2 - 10.1016/j.ntt.2011.10.001
DO - 10.1016/j.ntt.2011.10.001
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 22019469
AN - SCOPUS:82655189525
SN - 0892-0362
VL - 34
SP - 56
EP - 62
JO - Neurotoxicology and Teratology
JF - Neurotoxicology and Teratology
IS - 1
ER -