Theoretical analysis of LLE based on its weighting step

Yair Goldberg*, Ya'acov Ritov

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

The local linear embedding algorithm (LLE) is a widely used nonlinear dimensionreducing algorithm. However, its large sample properties are still not well understood. In this article, we present new theoretical results for LLE based on the way that LLE computes its weight vectors. We show that LLE's weight vectors are computed from the high-dimensional neighborhoods and are thus highly sensitive to noise. We also demonstrate that in some cases LLE's output converges to a linear projection of the highdimensional input. We prove that for a version of LLE that uses the low-dimensional neighborhood representation (LDR-LLE), the weights are robust against noise. We also prove that for conformally embedded manifold, the preimage of the input points achieves a low value of the LDR-LLE objective function, and that close-by points in the input are mapped to close-by points in the output. Finally, we prove that asymptotically LDR-LLE preserves the order of the points of a one-dimensional manifold. The Matlab code and all datasets in the presented examples are available as online supplements.

Original languageEnglish
Pages (from-to)380-393
Number of pages14
JournalJournal of Computational and Graphical Statistics
Volume21
Issue number2
DOIs
StatePublished - Jun 2012

Keywords

  • Dimension reduction
  • LDR-LLE
  • Locally linear embedding
  • Manifold learning

Fingerprint

Dive into the research topics of 'Theoretical analysis of LLE based on its weighting step'. Together they form a unique fingerprint.

Cite this