Theoretical study of mixing in liquid clouds-Part 1: Classical concepts

Alexei Korolev*, Alex Khain, Mark Pinsky, Jeffrey French

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

37 Scopus citations

Abstract

The present study considers final stages of in-cloud mixing in the framework of classical concept of homogeneous and extreme inhomogeneous mixing. Simple analytical relationships between basic microphysical parameters were obtained for homogeneous and extreme inhomogeneous mixing based on the adiabatic consideration. It was demonstrated that during homogeneous mixing the functional relationships between the moments of the droplets size distribution hold only during the primary stage of mixing. Subsequent random mixing between already mixed parcels and undiluted cloud parcels breaks these relationships. However, during extreme inhomogeneous mixing the functional relationships between the microphysical parameters hold both for primary and subsequent mixing. The obtained relationships can be used to identify the type of mixing from in situ observations. The effectiveness of the developed method was demonstrated using in situ data collected in convective clouds. It was found that for the specific set of in situ measurements the interaction between cloudy and entrained environments was dominated by extreme inhomogeneous mixing.

Original languageAmerican English
Pages (from-to)9235-9254
Number of pages20
JournalAtmospheric Chemistry and Physics
Volume16
Issue number14
DOIs
StatePublished - 28 Jul 2016

Bibliographical note

Publisher Copyright:
© 2016 Author(s).

Fingerprint

Dive into the research topics of 'Theoretical study of mixing in liquid clouds-Part 1: Classical concepts'. Together they form a unique fingerprint.

Cite this