TY - JOUR
T1 - Theoretical support for the hydrodynamic mechanism of pulsar kicks
AU - Nordhaus, J.
AU - Brandt, T. D.
AU - Burrows, A.
AU - Livne, E.
AU - Ott, C. D.
PY - 2010/11/30
Y1 - 2010/11/30
N2 - The collapse of a massive star's core, followed by a neutrino-driven, asymmetric supernova explosion, can naturally lead to pulsar recoils and neutron star kicks. Here, we present a two-dimensional, radiation-hydrodynamic simulation in which core collapse leads to significant acceleration of a fully formed, nascent neutron star via an induced, neutrino-driven explosion. During the explosion, an ∼10% anisotropy in the low-mass, high-velocity ejecta leads to recoil of the high-mass neutron star. At the end of our simulation, the neutron star has achieved a velocity of ∼150kms⊃-1 and is accelerating at ∼350kms⊃-2, but has yet to reach the ballistic regime. The recoil is due almost entirely to hydrodynamical processes, with anisotropic neutrino emission contributing less than 2% to the overall kick magnitude. Since the observed distribution of neutron star kick velocities peaks at ∼300-400kms⊃-1, recoil due to anisotropic core-collapse supernovae provides a natural, nonexotic mechanism with which to obtain neutron star kicks.
AB - The collapse of a massive star's core, followed by a neutrino-driven, asymmetric supernova explosion, can naturally lead to pulsar recoils and neutron star kicks. Here, we present a two-dimensional, radiation-hydrodynamic simulation in which core collapse leads to significant acceleration of a fully formed, nascent neutron star via an induced, neutrino-driven explosion. During the explosion, an ∼10% anisotropy in the low-mass, high-velocity ejecta leads to recoil of the high-mass neutron star. At the end of our simulation, the neutron star has achieved a velocity of ∼150kms⊃-1 and is accelerating at ∼350kms⊃-2, but has yet to reach the ballistic regime. The recoil is due almost entirely to hydrodynamical processes, with anisotropic neutrino emission contributing less than 2% to the overall kick magnitude. Since the observed distribution of neutron star kick velocities peaks at ∼300-400kms⊃-1, recoil due to anisotropic core-collapse supernovae provides a natural, nonexotic mechanism with which to obtain neutron star kicks.
UR - http://www.scopus.com/inward/record.url?scp=78651291750&partnerID=8YFLogxK
U2 - 10.1103/PhysRevD.82.103016
DO - 10.1103/PhysRevD.82.103016
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:78651291750
SN - 1550-7998
VL - 82
JO - Physical Review D - Particles, Fields, Gravitation and Cosmology
JF - Physical Review D - Particles, Fields, Gravitation and Cosmology
IS - 10
M1 - 103016
ER -