TY - CHAP
T1 - Theory and Practice of Support Vector Machines Optimization
AU - Shalev-Shwartz, Shai
AU - Srebo, Nathan
PY - 2009/1/14
Y1 - 2009/1/14
KW - Bias term incorporation
KW - Binary classification and traditional SVM
KW - Cost-sensitive multiclass categorization
KW - Dual decomposition methods
KW - Gradient-based methods and loss functions
KW - SVM training and linear prediction models
KW - Sequence prediction and cost-sensitive multi-class categorization
KW - Stochastic gradient descent (SGD) approach and training SVMs
KW - Support Vector Machines (SVMs) optimization
KW - approximation error with low-norm linear predictor
UR - http://www.scopus.com/inward/record.url?scp=77956523044&partnerID=8YFLogxK
U2 - 10.1002/9780470742044.ch2
DO - 10.1002/9780470742044.ch2
M3 - ???researchoutput.researchoutputtypes.contributiontobookanthology.chapter???
AN - SCOPUS:77956523044
SN - 9780470696835
SP - 11
EP - 26
BT - Automatic Speech and Speaker Recognition
PB - John Wiley & Sons, Ltd
ER -