TY - JOUR
T1 - Topochemistry. Part XXXI. Formation of cyclo-octa-1,5-cis,cis-dienes from 1,4-disubstituted s-trans-butadienes in the solid state. A contribution to the problem of C4- versus C8-cyclodimerisation
AU - Green, B. S.
AU - Lahav, M.
AU - Schmidt, G. M.J.
PY - 1971
Y1 - 1971
N2 - Solid penta-1,3-diene-1-carboxylic acid (4), penta-1,3-diene-1-carboxamide (5), buta-1,3-diene-1,4-dicarbonitrile (6), styrylacrylic acid (10), its methyl ester (46), and amide (49) (all trans,trans-configurated), all photodimerise on irradiation (λ > 290 nm), to divinylcyclobutane (C4) derivatives. The structures of the fully characterised photoproducts from (4), (5), (6), and (49) and the light-stability of (N-phenyl)styrylacrylamide (53), are predictable from the known or postulated packing arrangements of their monomers. Cyclo-octa-1,5-trans,trans-dienes, although topochemically and symmetry-allowed from monomers which crystallise with parallel butadiene chains [(4), (5), (6), and possibly (10)], are not observed. Although the formation of C8-cyclodimers cannot be rigorously excluded our results neither support nor require their presence. The (all-ax)-cyclo-octa-1,5-cis,cis-diene (C8) derivatives formed during irradiation of (4), (5), and (10) are not primary photoproducts but arise from thermal (Cope) rearrangements of photochemically produced cis-1,2-divinylcyclobutanes.
AB - Solid penta-1,3-diene-1-carboxylic acid (4), penta-1,3-diene-1-carboxamide (5), buta-1,3-diene-1,4-dicarbonitrile (6), styrylacrylic acid (10), its methyl ester (46), and amide (49) (all trans,trans-configurated), all photodimerise on irradiation (λ > 290 nm), to divinylcyclobutane (C4) derivatives. The structures of the fully characterised photoproducts from (4), (5), (6), and (49) and the light-stability of (N-phenyl)styrylacrylamide (53), are predictable from the known or postulated packing arrangements of their monomers. Cyclo-octa-1,5-trans,trans-dienes, although topochemically and symmetry-allowed from monomers which crystallise with parallel butadiene chains [(4), (5), (6), and possibly (10)], are not observed. Although the formation of C8-cyclodimers cannot be rigorously excluded our results neither support nor require their presence. The (all-ax)-cyclo-octa-1,5-cis,cis-diene (C8) derivatives formed during irradiation of (4), (5), and (10) are not primary photoproducts but arise from thermal (Cope) rearrangements of photochemically produced cis-1,2-divinylcyclobutanes.
UR - http://www.scopus.com/inward/record.url?scp=37049122718&partnerID=8YFLogxK
U2 - 10.1039/j29710001552
DO - 10.1039/j29710001552
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:37049122718
SN - 0045-6470
SP - 1552
EP - 1564
JO - Journal of the Chemical Society B: Physical Organic
JF - Journal of the Chemical Society B: Physical Organic
ER -