Topological control of extreme waves

Giulia Marcucci*, Davide Pierangeli, Aharon J. Agranat, Ray Kuang Lee, Eugenio DelRe, Claudio Conti

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

34 Scopus citations

Abstract

From optics to hydrodynamics, shock and rogue waves are widespread. Although they appear as distinct phenomena, transitions between extreme waves are allowed. However, these have never been experimentally observed because control strategies are still missing. We introduce the new concept of topological control based on the one-to-one correspondence between the number of wave packet oscillating phases and the genus of toroidal surfaces associated with the nonlinear Schrödinger equation solutions through Riemann theta functions. We demonstrate the concept experimentally by reporting observations of supervised transitions between waves with different genera. Considering the box problem in a focusing photorefractive medium, we tailor the time-dependent nonlinearity and dispersion to explore each region in the state diagram of the nonlinear wave propagation. Our result is the first realization of topological control of nonlinear waves. This new technique casts light on shock and rogue waves generation and can be extended to other nonlinear phenomena.

Original languageAmerican English
Article number5090
JournalNature Communications
Volume10
Issue number1
DOIs
StatePublished - 1 Dec 2019

Bibliographical note

Publisher Copyright:
© 2019, The Author(s).

Fingerprint

Dive into the research topics of 'Topological control of extreme waves'. Together they form a unique fingerprint.

Cite this