Abstract
Cracks develop intricate patterns on the surfaces that they create. As faceted fracture surfaces are commonly formed by slow tensile cracks in both crystalline and amorphous materials, facet formation and structure cannot reflect microscopic order. Although fracture mechanics predict that slow crack fronts should be straight and form mirror-like surfaces, facet-forming fronts propagate simultaneously within different planes separated by steps. Here we show that these steps are topological defects of crack fronts and that crack front separation into disconnected overlapping segments provides the condition for step stability. Real-time imaging of propagating crack fronts combined with surface measurements shows that crack dynamics are governed by localized steps that drift at a constant angle to the local front propagation direction while their increased dissipation couples to long-ranged elasticity to determine front shapes. We study how three-dimensional topology couples to two-dimensional fracture dynamics to provide a fundamental picture of how patterned surfaces are generated.
Original language | American English |
---|---|
Pages (from-to) | 140-144 |
Number of pages | 5 |
Journal | Nature Materials |
Volume | 17 |
Issue number | 2 |
DOIs | |
State | Published - 1 Feb 2018 |
Bibliographical note
Funding Information:J.F. and I.K. acknowledge the support of the Israel Science Foundation (grant no.1523/15), as well as the US-Israel Bi-national Science Foundation (grant no. 2016950). I.K. thanks I. Svetlizky and E. Katzav for fruitful discussions about step stability. I.K. is grateful to P. M. Chaikin for an enlightening conversation on the complexity of fracture surfaces
Publisher Copyright:
© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.