TY - JOUR
T1 - Topology of electron charge density for chemical bonds from valence Bond theory
T2 - A probe of bonding types
AU - Zhang, Lixian
AU - Ying, Fuming
AU - Wu, Wei
AU - Hiberty, Philippe C.
AU - Shaik, Sason
PY - 2009/3/9
Y1 - 2009/3/9
N2 - To characterize the nature of bonding we derive the topological properties of the electron charge density of a variety of bonds based on ab initio valence bond methods. The electron density and its associated Laplacian are partitioned into covalent, ionic, and resonance components in the valence bond spirit. The analysis provides a density-based signature of bonding types and reveals, along with the classical covalent and ionic bonds, the existence of two-electron bonds in which most of the bonding arises from the covalent-ionic resonance energy, so-called charge-shift bonds. As expected, the covalent component of the Laplacian at the bond critical point is found to be largely negative for classical covalent bonds. In contrast, for charge-shift bonds, the covalent part of the Laplacian is small or positive, in agreement with the weakly attractive or repulsive character of the covalent interaction in these bonds. On the other hand, the resonance component of the Laplacian is always negative or nearly zero, and it increases in absolute value with the charge-shift character of the bond, in agreement with the decrease of kinetic energy associated with covalent-ionic mixing. A new interpretation of the topology of the total density at the bond critical point is proposed to characterize covalent, ionic, and charge-shift bonding from the density point of view.
AB - To characterize the nature of bonding we derive the topological properties of the electron charge density of a variety of bonds based on ab initio valence bond methods. The electron density and its associated Laplacian are partitioned into covalent, ionic, and resonance components in the valence bond spirit. The analysis provides a density-based signature of bonding types and reveals, along with the classical covalent and ionic bonds, the existence of two-electron bonds in which most of the bonding arises from the covalent-ionic resonance energy, so-called charge-shift bonds. As expected, the covalent component of the Laplacian at the bond critical point is found to be largely negative for classical covalent bonds. In contrast, for charge-shift bonds, the covalent part of the Laplacian is small or positive, in agreement with the weakly attractive or repulsive character of the covalent interaction in these bonds. On the other hand, the resonance component of the Laplacian is always negative or nearly zero, and it increases in absolute value with the charge-shift character of the bond, in agreement with the decrease of kinetic energy associated with covalent-ionic mixing. A new interpretation of the topology of the total density at the bond critical point is proposed to characterize covalent, ionic, and charge-shift bonding from the density point of view.
KW - Ab initio calculations
KW - Bond theory
KW - Charge-shift bonding
KW - Electron pairing
KW - Valence bonds
UR - http://www.scopus.com/inward/record.url?scp=62349089329&partnerID=8YFLogxK
U2 - 10.1002/chem.200802134
DO - 10.1002/chem.200802134
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:62349089329
SN - 0947-6539
VL - 15
SP - 2979
EP - 2989
JO - Chemistry - A European Journal
JF - Chemistry - A European Journal
IS - 12
ER -