TY - JOUR
T1 - Towards a cluster structure on trigonometric zastava
AU - Finkelberg, Michael
AU - Kuznetsov, Alexander
AU - Rybnikov, Leonid
AU - Dobrovolska, Galyna
N1 - Publisher Copyright:
© 2016, Springer International Publishing.
PY - 2018/3/1
Y1 - 2018/3/1
N2 - We study a moduli problem on a nodal curve of arithmetic genus 1, whose solution is an open subscheme in the zastava space for projective line. This moduli space is equipped with a natural Poisson structure, and we compute it in a natural coordinate system. We compare this Poisson structure with the trigonometric Poisson structure on the transversal slices in an affine flag variety. We conjecture that certain generalized minors give rise to a cluster structure on the trigonometric zastava.
AB - We study a moduli problem on a nodal curve of arithmetic genus 1, whose solution is an open subscheme in the zastava space for projective line. This moduli space is equipped with a natural Poisson structure, and we compute it in a natural coordinate system. We compare this Poisson structure with the trigonometric Poisson structure on the transversal slices in an affine flag variety. We conjecture that certain generalized minors give rise to a cluster structure on the trigonometric zastava.
KW - 13F60
KW - 14M15
UR - https://www.scopus.com/pages/publications/84992065332
U2 - 10.1007/s00029-016-0287-1
DO - 10.1007/s00029-016-0287-1
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:84992065332
SN - 1022-1824
VL - 24
SP - 187
EP - 225
JO - Selecta Mathematica, New Series
JF - Selecta Mathematica, New Series
IS - 1
ER -