Transcription factor MITF regulates cardiac growth and hypertrophy

Sagi Tshori, Dan Gilon, Ronen Beeri, Hovav Nechushtan, Dmitry Kaluzhny, Eli Pikarsky, Ehud Razin*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

64 Scopus citations


High levels of microphthalmia transcription factor (MITF) expression have been described in several cell types, including melanocytes, mast cells, and osteoclasts. MITF plays a pivotal role in the regulation of specific genes in these cells. Although its mRNA has been found to be present in relatively high levels in the heart, its cardiac role has never been explored. Here we show that a specific heart isoform of MITF is expressed in cardiomyocytes and can be induced by β-adrenergic stimulation but not by paired box gene 3 (PAX3), the regulator of the melanocyte MITF isoform. In 2 mouse strains with different MITF mutations, heart weight/body weight ratio was decreased as was the hypertrophic response to β-adrenergic stimulation. These mice also demonstrated a tendency to sudden death following β-adrenergic stimulation. Most impressively, 15-month-old MITF-mutated mice had greatly decreased heart weight/body weight ratio, systolic function, and cardiac output. In contrast with normal mice, in the MITF-mutated mice, β-adrenergic stimulation failed to induce B-type natriuretic peptide (BNP), an important modulator of cardiac hypertrophy, while atrial natriuretic peptide levels and phosphorylated Akt were increased, suggesting a cardiac stress response. In addition, cardiomyocytes cultured with siRNA against MITF showed a substantial decrease in BNP promoter activity. Thus, for what we believe is the first time, we have demonstrated that MITF plays an essential role in β-adrenergic-induced cardiac hypertrophy.

Original languageAmerican English
Pages (from-to)2673-2681
Number of pages9
JournalJournal of Clinical Investigation
Issue number10
StatePublished - 2 Oct 2006
Externally publishedYes


Dive into the research topics of 'Transcription factor MITF regulates cardiac growth and hypertrophy'. Together they form a unique fingerprint.

Cite this