TY - JOUR
T1 - Transcription factor MITF regulates cardiac growth and hypertrophy
AU - Tshori, Sagi
AU - Gilon, Dan
AU - Beeri, Ronen
AU - Nechushtan, Hovav
AU - Kaluzhny, Dmitry
AU - Pikarsky, Eli
AU - Razin, Ehud
PY - 2006/10/2
Y1 - 2006/10/2
N2 - High levels of microphthalmia transcription factor (MITF) expression have been described in several cell types, including melanocytes, mast cells, and osteoclasts. MITF plays a pivotal role in the regulation of specific genes in these cells. Although its mRNA has been found to be present in relatively high levels in the heart, its cardiac role has never been explored. Here we show that a specific heart isoform of MITF is expressed in cardiomyocytes and can be induced by β-adrenergic stimulation but not by paired box gene 3 (PAX3), the regulator of the melanocyte MITF isoform. In 2 mouse strains with different MITF mutations, heart weight/body weight ratio was decreased as was the hypertrophic response to β-adrenergic stimulation. These mice also demonstrated a tendency to sudden death following β-adrenergic stimulation. Most impressively, 15-month-old MITF-mutated mice had greatly decreased heart weight/body weight ratio, systolic function, and cardiac output. In contrast with normal mice, in the MITF-mutated mice, β-adrenergic stimulation failed to induce B-type natriuretic peptide (BNP), an important modulator of cardiac hypertrophy, while atrial natriuretic peptide levels and phosphorylated Akt were increased, suggesting a cardiac stress response. In addition, cardiomyocytes cultured with siRNA against MITF showed a substantial decrease in BNP promoter activity. Thus, for what we believe is the first time, we have demonstrated that MITF plays an essential role in β-adrenergic-induced cardiac hypertrophy.
AB - High levels of microphthalmia transcription factor (MITF) expression have been described in several cell types, including melanocytes, mast cells, and osteoclasts. MITF plays a pivotal role in the regulation of specific genes in these cells. Although its mRNA has been found to be present in relatively high levels in the heart, its cardiac role has never been explored. Here we show that a specific heart isoform of MITF is expressed in cardiomyocytes and can be induced by β-adrenergic stimulation but not by paired box gene 3 (PAX3), the regulator of the melanocyte MITF isoform. In 2 mouse strains with different MITF mutations, heart weight/body weight ratio was decreased as was the hypertrophic response to β-adrenergic stimulation. These mice also demonstrated a tendency to sudden death following β-adrenergic stimulation. Most impressively, 15-month-old MITF-mutated mice had greatly decreased heart weight/body weight ratio, systolic function, and cardiac output. In contrast with normal mice, in the MITF-mutated mice, β-adrenergic stimulation failed to induce B-type natriuretic peptide (BNP), an important modulator of cardiac hypertrophy, while atrial natriuretic peptide levels and phosphorylated Akt were increased, suggesting a cardiac stress response. In addition, cardiomyocytes cultured with siRNA against MITF showed a substantial decrease in BNP promoter activity. Thus, for what we believe is the first time, we have demonstrated that MITF plays an essential role in β-adrenergic-induced cardiac hypertrophy.
UR - http://www.scopus.com/inward/record.url?scp=33749451494&partnerID=8YFLogxK
U2 - 10.1172/JCI27643
DO - 10.1172/JCI27643
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 16998588
AN - SCOPUS:33749451494
SN - 0021-9738
VL - 116
SP - 2673
EP - 2681
JO - Journal of Clinical Investigation
JF - Journal of Clinical Investigation
IS - 10
ER -