TY - JOUR
T1 - Transcription of cholesterol side-chain cleavage cytochrome P450 in the placenta
T2 - Activating protein-2 assumes the role of steroidogenic factor-1 by binding to an overlapping promoter element
AU - Ben-Zimra, Micha
AU - Koler, Moriah
AU - Orly, Joseph
PY - 2002
Y1 - 2002
N2 - Progesterone is essential to the sustenance of pregnancy in humans and other mammals. From the second trimester on, the human placenta is the sole origin of de novo synthesized steroid hormones. In mice, placentation at midgestation is accompanied by a temporal rise of steroid hormone synthesis commencing in the giant cells of the mouse trophoblast. In doing so, the giant trophoblasts, as any other steroidogenic cell, express high levels of the key steroidogenic enzyme, cholesterol side-chain cleavage cytochrome P450 (P450scc). Because steroidogenic factor 1 (SF-1), the transcription factor required for expression of P450scc in the adrenals and the gonads, is not expressed in the placenta, we hypothesized that placenta-specific nuclear factor(s) (PNF) assumes the role of SF-1 by binding to the same promoter region that harbors the SF-1 recognition site in the P450scc gene. To address this possibility, we used SCC1, a well conserved proximal region in the P450scc genes (-60/-32 in the rat gene) to purify PNF from human term placenta. Sequencing of the purified PNF revealed that it is the α isoform of the human activating protein-2 (AP-2α). Specific antibodies tested in EMSA confirmed that AP-2α is the predominant isoform that binds SCC1 in the human placenta, whereas AP-2γ is the only mouse placental protein that binds this oligonucleotide. Functional studies showed that coexpression of the rat P450scc promoter (-378/+8 CAT) and AP-2 isoforms (α or γ) in human embryonic kidney 293 cells results in a marked activation of chloramphenicol acetyltransferase (CAT) transcription that is dependent on an intact AP-2 motif, GCCTTGAGC. This motif conforms with consensus sequences previously determined for binding of the AP-2 α and γ isoforms. Mutations of the AP-2 element ablated binding of AP-2 to SCC1, as well as severely diminished the promoter activity in primary mouse giant trophoblasts and human choriocarcinoma JAR cells. Collectively, these studies suggest that expression of placental P450scc is governed by AP-2 factors that bind to a cis-element that largely overlaps the sequence required for recognition of SF-1 in other steroidogenic tissues.
AB - Progesterone is essential to the sustenance of pregnancy in humans and other mammals. From the second trimester on, the human placenta is the sole origin of de novo synthesized steroid hormones. In mice, placentation at midgestation is accompanied by a temporal rise of steroid hormone synthesis commencing in the giant cells of the mouse trophoblast. In doing so, the giant trophoblasts, as any other steroidogenic cell, express high levels of the key steroidogenic enzyme, cholesterol side-chain cleavage cytochrome P450 (P450scc). Because steroidogenic factor 1 (SF-1), the transcription factor required for expression of P450scc in the adrenals and the gonads, is not expressed in the placenta, we hypothesized that placenta-specific nuclear factor(s) (PNF) assumes the role of SF-1 by binding to the same promoter region that harbors the SF-1 recognition site in the P450scc gene. To address this possibility, we used SCC1, a well conserved proximal region in the P450scc genes (-60/-32 in the rat gene) to purify PNF from human term placenta. Sequencing of the purified PNF revealed that it is the α isoform of the human activating protein-2 (AP-2α). Specific antibodies tested in EMSA confirmed that AP-2α is the predominant isoform that binds SCC1 in the human placenta, whereas AP-2γ is the only mouse placental protein that binds this oligonucleotide. Functional studies showed that coexpression of the rat P450scc promoter (-378/+8 CAT) and AP-2 isoforms (α or γ) in human embryonic kidney 293 cells results in a marked activation of chloramphenicol acetyltransferase (CAT) transcription that is dependent on an intact AP-2 motif, GCCTTGAGC. This motif conforms with consensus sequences previously determined for binding of the AP-2 α and γ isoforms. Mutations of the AP-2 element ablated binding of AP-2 to SCC1, as well as severely diminished the promoter activity in primary mouse giant trophoblasts and human choriocarcinoma JAR cells. Collectively, these studies suggest that expression of placental P450scc is governed by AP-2 factors that bind to a cis-element that largely overlaps the sequence required for recognition of SF-1 in other steroidogenic tissues.
UR - http://www.scopus.com/inward/record.url?scp=0036020507&partnerID=8YFLogxK
U2 - 10.1210/me.2002-0056
DO - 10.1210/me.2002-0056
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 12145340
AN - SCOPUS:0036020507
SN - 0888-8809
VL - 16
SP - 1864
EP - 1880
JO - Molecular Endocrinology
JF - Molecular Endocrinology
IS - 8
ER -