Transcriptome free energy can serve as a dynamic patient-specific biomarker in acute myeloid leukemia

Lisa Uechi, Swetha Vasudevan, Daniela Vilenski, Sergio Branciamore, David Frankhouser, Denis O’Meally, Soheil Meshinchi, Guido Marcucci, Ya Huei Kuo, Russell Rockne*, Nataly Kravchenko-Balasha*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Acute myeloid leukemia (AML) is prevalent in both adult and pediatric patients. Despite advances in patient categorization, the heterogeneity of AML remains a challenge. Recent studies have explored the use of gene expression data to enhance AML diagnosis and prognosis, however, alternative approaches rooted in physics and chemistry may provide another level of insight into AML transformation. Utilizing publicly available databases, we analyze 884 human and mouse blood and bone marrow samples. We employ a personalized medicine strategy, combining state-transition theory and surprisal analysis, to assess the RNA transcriptome of individual patients. The transcriptome is transformed into physical parameters that represent each sample’s steady state and the free energy change (FEC) from that steady state, which is the state with the lowest free energy. We found the transcriptome steady state was invariant across normal and AML samples. FEC, representing active molecular processes, varied significantly between samples and was used to create patient-specific barcodes to characterize the biology of the disease. We discovered that AML samples that were in a transition state had the highest FEC. This disease state may be characterized as the most unstable and hence the most therapeutically targetable since a change in free energy is a thermodynamic requirement for disease progression. We also found that distinct sets of ongoing processes may be at the root of otherwise similar clinical phenotypes, implying that our integrated analysis of transcriptome profiles may facilitate a personalized medicine approach to cure AML and restore a steady state in each patient.

Original languageAmerican English
Article number32
Journalnpj Systems Biology and Applications
Volume10
Issue number1
DOIs
StatePublished - Dec 2024

Bibliographical note

Publisher Copyright:
© The Author(s) 2024.

Fingerprint

Dive into the research topics of 'Transcriptome free energy can serve as a dynamic patient-specific biomarker in acute myeloid leukemia'. Together they form a unique fingerprint.

Cite this