TY - JOUR
T1 - Transient Dissipative Optical Properties of Aggregated Au Nanoparticles, CdSe/ZnS Quantum Dots, and Supramolecular Nucleic Acid-Stabilized Ag Nanoclusters
AU - Ouyang, Yu
AU - Zhang, Pu
AU - Manis-Levy, Hadar
AU - Paltiel, Yossi
AU - Willner, Itamar
N1 - Publisher Copyright:
© 2021 American Chemical Society.
PY - 2021/10/27
Y1 - 2021/10/27
N2 - Transient, dissipative, aggregation and deaggregation of Au nanoparticles (NPs) or semiconductor quantum dots (QDs) leading to control over their transient optical properties are introduced. The systems consist of nucleic acid-modified pairs of Au NPs or pairs of CdSe/ZnS QDs, an auxiliary duplex L1/T1, and the nicking enzyme Nt.BbvCI as functional modules yielding transient aggregation/deaggregation of the NPs and dynamically controlling over their optical properties. In the presence of a fuel strand L1′, the duplex L1/T1 is separated, leading to the release of T1 and the formation of duplex L1/L1′. The released T1 leads to aggregation of the Au NPs or to the T1-induced G-quadruplex bridged aggregated CdSe/ZnS QDs. Biocatalytic nicking of the L1/L1′ duplex fragments L1′ and the released L1 displaces T1 bridging the aggregated NPs or QDs, resulting in the dynamic recovery of the original NPs or QDs modules. The dynamic aggregation/deaggregation of the Au NPs is followed by the transient interparticle plasmon coupling spectral changes. The dynamic aggregation/deaggregation of the CdSe/ZnS QDs is probed by following the transient chemiluminescence generated by the hemin/G-quadruplexes bridging the QDs and by the accompanying transient chemiluminescence resonance energy transfer proceeding in the dynamically formed QDs aggregates. A third system demonstrating transient, dissipative, luminescence properties of a reaction module consisting of nucleic acid-stabilized Ag nanoclusters (NCs) is introduced. Transient dynamic formation and depletion of the supramolecular luminescent Ag NCs system via strand displacement accompanied by a nicking process are demonstrated.
AB - Transient, dissipative, aggregation and deaggregation of Au nanoparticles (NPs) or semiconductor quantum dots (QDs) leading to control over their transient optical properties are introduced. The systems consist of nucleic acid-modified pairs of Au NPs or pairs of CdSe/ZnS QDs, an auxiliary duplex L1/T1, and the nicking enzyme Nt.BbvCI as functional modules yielding transient aggregation/deaggregation of the NPs and dynamically controlling over their optical properties. In the presence of a fuel strand L1′, the duplex L1/T1 is separated, leading to the release of T1 and the formation of duplex L1/L1′. The released T1 leads to aggregation of the Au NPs or to the T1-induced G-quadruplex bridged aggregated CdSe/ZnS QDs. Biocatalytic nicking of the L1/L1′ duplex fragments L1′ and the released L1 displaces T1 bridging the aggregated NPs or QDs, resulting in the dynamic recovery of the original NPs or QDs modules. The dynamic aggregation/deaggregation of the Au NPs is followed by the transient interparticle plasmon coupling spectral changes. The dynamic aggregation/deaggregation of the CdSe/ZnS QDs is probed by following the transient chemiluminescence generated by the hemin/G-quadruplexes bridging the QDs and by the accompanying transient chemiluminescence resonance energy transfer proceeding in the dynamically formed QDs aggregates. A third system demonstrating transient, dissipative, luminescence properties of a reaction module consisting of nucleic acid-stabilized Ag nanoclusters (NCs) is introduced. Transient dynamic formation and depletion of the supramolecular luminescent Ag NCs system via strand displacement accompanied by a nicking process are demonstrated.
UR - http://www.scopus.com/inward/record.url?scp=85118239313&partnerID=8YFLogxK
U2 - 10.1021/jacs.1c07895
DO - 10.1021/jacs.1c07895
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 34643387
AN - SCOPUS:85118239313
SN - 0002-7863
VL - 143
SP - 17622
EP - 17632
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 42
ER -