Abstract
Cancer research is striving toward new frontiers of assigning the correct personalized drug(s) to a given patient. However, extensive tumor heterogeneity poses a major obstacle. Tumors of the same type often respond differently to therapy, due to patient-specific molecular aberrations and/or untargeted tumor subpopulations. It is frequently not possible to determine a priori which patients will respond to a certain therapy or how an efficient patient-specific combined therapy should be designed. Large-scale datasets have been growing at an accelerated pace and various technologies and analytical tools for single cell and bulk level analyses are being developed to extract significant individualized signals from such heterogeneous data. However, personalized therapies that dramatically alter the course of the disease remain scarce, and most tumors still respond poorly to medical care. In this review, the basic concepts of bulk and single cell approaches are discussed, as well as their emerging role in individualized designs of drug therapies, including the advantages and limitations of their applications in personalized medicine.
Original language | American English |
---|---|
Article number | 1900227 |
Journal | Proteomics |
Volume | 20 |
Issue number | 13 |
DOIs | |
State | Published - 1 Jul 2020 |
Bibliographical note
Funding Information:The work was supported by Israel Science Foundation (ISF).
Publisher Copyright:
© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Keywords
- bulk proteomics
- cancer heterogeneity
- personalized medicine
- single cell analysis