Translation-invariant line bundles on linear algebraic groups

Zev Rosengarten*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

We study the Picard groups of connected linear algebraic groups and especially the subgroup of translation-invariant line bundles. We prove that this subgroup is finite over every global function field. We also utilize our study of these groups in order to construct various examples of pathological behavior for the cohomology of commutative linear algebraic groups over local and global function fields.

Original languageEnglish
Pages (from-to)433-455
Number of pages23
JournalJournal of Algebraic Geometry
Volume30
Issue number3
DOIs
StatePublished - 2021

Bibliographical note

Publisher Copyright:
© 2020 University Press, Inc.

Fingerprint

Dive into the research topics of 'Translation-invariant line bundles on linear algebraic groups'. Together they form a unique fingerprint.

Cite this