Abstract
Regional extratropical tropospheric variability in the North Pacific and eastern Europe is well correlated with variability in the Northern Hemisphere wintertime stratospheric polar vortex in both the ECMWF reanalysis record and in the Whole Atmosphere Community Climate Model. To explain this correlation, the link between stratospheric vertical Eliassen-Palm flux variability and tropospheric variability is analyzed. Simple reasoning shows that variability in the North Pacific and eastern Europe can deepen or flatten the wintertime tropospheric stationary waves, and in particular its wavenumber-1 and -2 components, thus providing a physical explanation for the correlation between these regions and vortex weakening. These two pathways begin to weaken the upper stratospheric vortex nearly immediately, with a peak influence apparent after a lag of some 20 days. The influence then appears to propagate downward in time, as expected from wave-mean flow interaction theory. These patterns are influenced by ENSO and October Eurasian snow cover. Perturbations in the vortex induced by the two regions add linearly. These two patterns and the quasi-biennial oscillation (QBO) are linearly related to 40% of polar vortex variability during winter in the reanalysis record.
Original language | English |
---|---|
Pages (from-to) | 3282-3299 |
Number of pages | 18 |
Journal | Journal of Climate |
Volume | 23 |
Issue number | 12 |
DOIs | |
State | Published - Jun 2010 |
Externally published | Yes |