TY - JOUR
T1 - Tuning Sodium Channel Blockers to the Near-Atomic Level
AU - Eyal, Sara
N1 - Publisher Copyright:
© The Author(s) 2024.
PY - 2024/3/1
Y1 - 2024/3/1
N2 - Dual-Pocket Inhibition of Nav Channels by the Antiepileptic Drug Lamotrigine Huang J, Fan X, Jin X, Teng L, Yan N. Proc Natl Acad Sci USA. 2023;120(41):e2309773120. doi:10.1073/pnas.2309773120 Voltage-gated sodium (Nav) channels govern membrane excitability, thus setting the foundation for various physiological and neuronal processes. Nav channels serve as the primary targets for several classes of widely used and investigational drugs, including local anesthetics, antiepileptic drugs, antiarrhythmics, and analgesics. In this study, we present cryogenic electron microscopy (cryo-EM) structures of human Nav1.7 bound to two clinical drugs, riluzole (RLZ) and lamotrigine (LTG), at resolutions of 2.9 Å and 2.7 Å, respectively. A 3D EM reconstruction of ligand-free Nav1.7 was also obtained at 2.1 Å resolution. RLZ resides in the central cavity of the pore domain and is coordinated by residues from repeats III and IV. Whereas one LTG molecule also binds to the central cavity, the other is found beneath the intracellular gate, known as site BIG. Therefore, LTG, similar to lacosamide and cannabidiol, blocks Nav channels via a dual-pocket mechanism. These structures, complemented with docking and mutational analyses, also explain the structure-activity relationships of the LTG-related linear 6,6 series that have been developed for improved efficacy and subtype specificity on different Nav channels. Our findings reveal the molecular basis for these drugs’ mechanism of action and will aid the development of novel antiepileptic and pain-relieving drugs.
AB - Dual-Pocket Inhibition of Nav Channels by the Antiepileptic Drug Lamotrigine Huang J, Fan X, Jin X, Teng L, Yan N. Proc Natl Acad Sci USA. 2023;120(41):e2309773120. doi:10.1073/pnas.2309773120 Voltage-gated sodium (Nav) channels govern membrane excitability, thus setting the foundation for various physiological and neuronal processes. Nav channels serve as the primary targets for several classes of widely used and investigational drugs, including local anesthetics, antiepileptic drugs, antiarrhythmics, and analgesics. In this study, we present cryogenic electron microscopy (cryo-EM) structures of human Nav1.7 bound to two clinical drugs, riluzole (RLZ) and lamotrigine (LTG), at resolutions of 2.9 Å and 2.7 Å, respectively. A 3D EM reconstruction of ligand-free Nav1.7 was also obtained at 2.1 Å resolution. RLZ resides in the central cavity of the pore domain and is coordinated by residues from repeats III and IV. Whereas one LTG molecule also binds to the central cavity, the other is found beneath the intracellular gate, known as site BIG. Therefore, LTG, similar to lacosamide and cannabidiol, blocks Nav channels via a dual-pocket mechanism. These structures, complemented with docking and mutational analyses, also explain the structure-activity relationships of the LTG-related linear 6,6 series that have been developed for improved efficacy and subtype specificity on different Nav channels. Our findings reveal the molecular basis for these drugs’ mechanism of action and will aid the development of novel antiepileptic and pain-relieving drugs.
UR - http://www.scopus.com/inward/record.url?scp=85182638725&partnerID=8YFLogxK
U2 - 10.1177/15357597231225065
DO - 10.1177/15357597231225065
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.comment???
C2 - 39280048
AN - SCOPUS:85182638725
SN - 1535-7597
VL - 24
SP - 123
EP - 125
JO - Epilepsy Currents
JF - Epilepsy Currents
IS - 2
ER -