Tunneling spectroscopy of few-monolayer NbSe2 in high magnetic fields: Triplet superconductivity and Ising protection

M. Kuzmanović, T. Dvir, D. Leboeuf, S. Ilić, M. Haim, D. Möckli, S. Kramer, M. Khodas, M. Houzet, J. S. Meyer, M. Aprili, H. Steinberg, C. H.L. Quay*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

11 Scopus citations


In conventional Bardeen-Cooper-Schrieffer superconductors, Cooper pairs of electrons of opposite spin (i.e., singlet structure) form the ground state. Equal-spin triplet pairs (ESTPs), as in superfluid He3, are of great interest for superconducting spintronics and topological superconductivity, yet remain elusive. Recently, odd-parity ESTPs were predicted to arise in (few-)monolayer superconducting NbSe2, from the noncollinearity between the out-of-plane Ising spin-orbit field (due to the lack of inversion symmetry in monolayer NbSe2) and an applied in-plane magnetic field. These ESTPs couple to the singlet order parameter at finite field. Using van der Waals tunnel junctions, we perform spectroscopy of superconducting NbSe2 flakes, of 2-25 monolayer thickness, measuring the quasiparticle density of states (DOS) as a function of applied in-plane magnetic field up to 33 T. In flakes ≲15 monolayers thick the DOS has a single superconducting gap. In these thin samples, the magnetic field acts primarily on the spin (vs orbital) degree of freedom of the electrons, and superconductivity is further protected by the Ising field. The superconducting energy gap, extracted from our tunneling spectra, decreases as a function of the applied magnetic field. However, in bilayer NbSe2, close to the critical field (up to 30 T, much larger than the Pauli limit), superconductivity appears to be more robust than expected from Ising protection alone. Our data can be explained by the above-mentioned ESTPs.

Original languageAmerican English
Article number184514
JournalPhysical Review B
Issue number18
StatePublished - 1 Nov 2022

Bibliographical note

Publisher Copyright:
© 2022 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.


Dive into the research topics of 'Tunneling spectroscopy of few-monolayer NbSe2 in high magnetic fields: Triplet superconductivity and Ising protection'. Together they form a unique fingerprint.

Cite this