TY - JOUR
T1 - Two is better than one
T2 - longitudinal detection and volumetric evaluation of brain metastases after Stereotactic Radiosurgery with a deep learning pipeline
AU - Hammer, Yonny
AU - Najjar, Wenad
AU - Kahanov, Lea
AU - Joskowicz, Leo
AU - Shoshan, Yigal
N1 - Publisher Copyright:
© 2024, The Author(s).
PY - 2024/2
Y1 - 2024/2
N2 - PURPOSE: Close MRI surveillance of patients with brain metastases following Stereotactic Radiosurgery (SRS) treatment is essential for assessing treatment response and the current disease status in the brain. This follow-up necessitates the comparison of target lesion sizes in pre- (prior) and post-SRS treatment (current) T1W-Gad MRI scans. Our aim was to evaluate SimU-Net, a novel deep-learning model for the detection and volumetric analysis of brain metastases and their temporal changes in paired prior and current scans.METHODS: SimU-Net is a simultaneous multi-channel 3D U-Net model trained on pairs of registered prior and current scans of a patient. We evaluated its performance on 271 pairs of T1W-Gad MRI scans from 226 patients who underwent SRS. An expert oncological neurosurgeon manually delineated 1,889 brain metastases in all the MRI scans (1,368 with diameters > 5 mm, 834 > 10 mm). The SimU-Net model was trained/validated on 205 pairs from 169 patients (1,360 metastases) and tested on 66 pairs from 57 patients (529 metastases). The results were then compared to the ground truth delineations.RESULTS: SimU-Net yielded a mean (std) detection precision and recall of 1.00±0.00 and 0.99±0.06 for metastases > 10 mm, 0.90±0.22 and 0.97±0.12 for metastases > 5 mm of, and 0.76±0.27 and 0.94±0.16 for metastases of all sizes. It improves lesion detection precision by 8% for all metastases sizes and by 12.5% for metastases < 10 mm with respect to standalone 3D U-Net. The segmentation Dice scores were 0.90±0.10, 0.89±0.10 and 0.89±0.10 for the above metastases sizes, all above the observer variability of 0.80±0.13.CONCLUSION: Automated detection and volumetric quantification of brain metastases following SRS have the potential to enhance the assessment of treatment response and alleviate the clinician workload.
AB - PURPOSE: Close MRI surveillance of patients with brain metastases following Stereotactic Radiosurgery (SRS) treatment is essential for assessing treatment response and the current disease status in the brain. This follow-up necessitates the comparison of target lesion sizes in pre- (prior) and post-SRS treatment (current) T1W-Gad MRI scans. Our aim was to evaluate SimU-Net, a novel deep-learning model for the detection and volumetric analysis of brain metastases and their temporal changes in paired prior and current scans.METHODS: SimU-Net is a simultaneous multi-channel 3D U-Net model trained on pairs of registered prior and current scans of a patient. We evaluated its performance on 271 pairs of T1W-Gad MRI scans from 226 patients who underwent SRS. An expert oncological neurosurgeon manually delineated 1,889 brain metastases in all the MRI scans (1,368 with diameters > 5 mm, 834 > 10 mm). The SimU-Net model was trained/validated on 205 pairs from 169 patients (1,360 metastases) and tested on 66 pairs from 57 patients (529 metastases). The results were then compared to the ground truth delineations.RESULTS: SimU-Net yielded a mean (std) detection precision and recall of 1.00±0.00 and 0.99±0.06 for metastases > 10 mm, 0.90±0.22 and 0.97±0.12 for metastases > 5 mm of, and 0.76±0.27 and 0.94±0.16 for metastases of all sizes. It improves lesion detection precision by 8% for all metastases sizes and by 12.5% for metastases < 10 mm with respect to standalone 3D U-Net. The segmentation Dice scores were 0.90±0.10, 0.89±0.10 and 0.89±0.10 for the above metastases sizes, all above the observer variability of 0.80±0.13.CONCLUSION: Automated detection and volumetric quantification of brain metastases following SRS have the potential to enhance the assessment of treatment response and alleviate the clinician workload.
KW - Brain metastases detection and segmentation
KW - Longitudinal evaluation
KW - Stereotactic radiosurgery evaluation
KW - Volumetric brain metastases assessment
UR - http://www.scopus.com/inward/record.url?scp=85183929921&partnerID=8YFLogxK
U2 - 10.1007/s11060-024-04580-y
DO - 10.1007/s11060-024-04580-y
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 38300389
AN - SCOPUS:85183929921
SN - 0167-594X
VL - 166
SP - 547
EP - 555
JO - Journal of Neuro-Oncology
JF - Journal of Neuro-Oncology
IS - 3
ER -