TY - JOUR
T1 - Two-state reactivity in alkane hydroxylation by non-heme iron-oxo comolexes
AU - Hirao, Hajime
AU - Kumar, Devesh
AU - Que, Lawrence
AU - Shaik, Sason
PY - 2006/7/5
Y1 - 2006/7/5
N2 - Density functional theory is used to explore the mechanisms of alkane hydroxylation for four synthetic non-heme iron(IV)-oxo complexes with three target substrates (Kaizer, J.; Klinker, E. J.; Oh, N. Y.; Rohde; J.-U.; Song, W. J.; Stubna, A.; Kim, J.; Münck, E.; Nam, W.; Que, L., Jr. J. Am. Chem. Soc. 2004, 126, 472-473; Rohde, J.-U.; Que, L., Jr. Angew. Chem. Int. Ed. 2005, 44, 2255-2258.). The iron-oxo reagents possess triplet ground states and low-lying quintet excited states. The set of experimental and theoretical reactivity trends can be understood if the reactions proceed on the two spin states, namely two-state reactivity (TSR); an appropriate new model is presented. The TSR model makes testable predictions: (a) If crossing to the quintet state occurs, the hydroxylation will be effectively concerted; however, if the process transpires only on the triplet surface, stepwise hydroxylation will occur, and side products derived from radical intermediates would be observed (e.g., loss of stereochemistry). (b) In cases of crossing en route to the quintet transition state, one expects kinetic isotope effects (KIEs) typical of tunneling. (c) In situations where the two surfaces contribute to the rate, one expects intermediate KIEs and radical scrambling patterns that reflect the two processes. (d) Solvent effects on these reactions are expected to be very large.
AB - Density functional theory is used to explore the mechanisms of alkane hydroxylation for four synthetic non-heme iron(IV)-oxo complexes with three target substrates (Kaizer, J.; Klinker, E. J.; Oh, N. Y.; Rohde; J.-U.; Song, W. J.; Stubna, A.; Kim, J.; Münck, E.; Nam, W.; Que, L., Jr. J. Am. Chem. Soc. 2004, 126, 472-473; Rohde, J.-U.; Que, L., Jr. Angew. Chem. Int. Ed. 2005, 44, 2255-2258.). The iron-oxo reagents possess triplet ground states and low-lying quintet excited states. The set of experimental and theoretical reactivity trends can be understood if the reactions proceed on the two spin states, namely two-state reactivity (TSR); an appropriate new model is presented. The TSR model makes testable predictions: (a) If crossing to the quintet state occurs, the hydroxylation will be effectively concerted; however, if the process transpires only on the triplet surface, stepwise hydroxylation will occur, and side products derived from radical intermediates would be observed (e.g., loss of stereochemistry). (b) In cases of crossing en route to the quintet transition state, one expects kinetic isotope effects (KIEs) typical of tunneling. (c) In situations where the two surfaces contribute to the rate, one expects intermediate KIEs and radical scrambling patterns that reflect the two processes. (d) Solvent effects on these reactions are expected to be very large.
UR - http://www.scopus.com/inward/record.url?scp=33745728199&partnerID=8YFLogxK
U2 - 10.1021/ja061609o
DO - 10.1021/ja061609o
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 16802826
AN - SCOPUS:33745728199
SN - 0002-7863
VL - 128
SP - 8590
EP - 8606
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 26
ER -