Ultrafast Backbone Protonation in Channelrhodopsin-1 Captured by Polarization Resolved Fs Vis-pump—IR-Probe Spectroscopy and Computational Methods

Till Stensitzki, Suliman Adam, Ramona Schlesinger, Igor Schapiro, Karsten Heyne*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

Channelrhodopsins (ChR) are light-gated ion-channels heavily used in optogenetics. Upon light excitation an ultrafast all-trans to 13-cis isomerization of the retinal chromophore takes place. It is still uncertain by what means this reaction leads to further protein changes and channel conductivity. Channelrhodopsin-1 in Chlamydomonas augustae exhibits a 100 fs photoisomerization and a protonated counterion complex. By polarization resolved ultrafast spectroscopy in the mid-IR we show that the initial reaction of the retinal is accompanied by changes in the protein backbone and ultrafast protonation changes at the counterion complex comprising Asp299 and Glu169. In combination with homology modelling and quantum mechanics/molecular mechanics (QM/MM) geometry optimization we assign the protonation dynamics to ultrafast deprotonation of Glu169, and transient protonation of the Glu169 backbone, followed by a proton transfer from the backbone to the carboxylate group of Asp299 on a timescale of tens of picoseconds. The second proton transfer is not related to retinal dynamics and reflects pure protein changes in the first photoproduct. We assume these protein dynamics to be the first steps in a cascade of protein-wide changes resulting in channel conductivity.

Original languageEnglish
Article number848
JournalMolecules
Volume25
Issue number4
DOIs
StatePublished - 14 Feb 2020

Bibliographical note

Publisher Copyright:
© 2020 by the authors.

Keywords

  • Channelrhodopsin
  • Counter-ion
  • Optogenetics
  • Photoisomerization
  • Protein dynamics
  • Proton back-transfer
  • Proton transfer
  • QM/MM calculations
  • Retinal
  • Vibrational spectroscopy

Fingerprint

Dive into the research topics of 'Ultrafast Backbone Protonation in Channelrhodopsin-1 Captured by Polarization Resolved Fs Vis-pump—IR-Probe Spectroscopy and Computational Methods'. Together they form a unique fingerprint.

Cite this