Abstract
Spatial heterogeneities in the chemical makeup of thin film photovoltaic devices are pivotal in determining device efficiency. In this study, the presence of chlorine is identified in perovskite films synthesized with Cl-containing precursors by means of nanoprobe X-ray fluorescence (Nano-XRF). Additionally, a spatial variation in the Cl incorporation is observed within a given film, and the standard deviation of Cl: I ratio across the film is large. Using Nano-XRF, the Cl incorporation in methylammonium lead iodide perovskite films can be manipulated by precursor stoichiometry ratio.
Original language | English |
---|---|
Title of host publication | 2016 IEEE 43rd Photovoltaic Specialists Conference, PVSC 2016 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 802-803 |
Number of pages | 2 |
ISBN (Electronic) | 9781509027248 |
DOIs | |
State | Published - 18 Nov 2016 |
Event | 43rd IEEE Photovoltaic Specialists Conference, PVSC 2016 - Portland, United States Duration: 5 Jun 2016 → 10 Jun 2016 |
Publication series
Name | Conference Record of the IEEE Photovoltaic Specialists Conference |
---|---|
Volume | 2016-November |
ISSN (Print) | 0160-8371 |
Conference
Conference | 43rd IEEE Photovoltaic Specialists Conference, PVSC 2016 |
---|---|
Country/Territory | United States |
City | Portland |
Period | 5/06/16 → 10/06/16 |
Bibliographical note
Publisher Copyright:© 2016 IEEE.
Keywords
- Cl containing precursors
- elemental distribution
- nano-XRF
- perovskite solar cells
- synchrotron based technique