Universal correlations in a nonlinear periodic 1D system

Yaron Silberberg*, Yoav Lahini, Yaron Bromberg, Eran Small, Roberto Morandotti

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

38 Scopus citations

Abstract

When a periodic 1D system described by a tight-binding model is uniformly initialized with equal amplitudes at all sites, yet with completely random phases, it evolves into a thermal distribution with no spatial correlations. However, when the system is nonlinear, correlations are spontaneously formed. We find that for strong nonlinearities, the intensity histograms approach a narrow Gaussian distributed around their mean and phase correlations are formed between neighboring sites. Sites tend to be out of phase for a positive nonlinearity and in phase for a negative one. Most impressively, the field correlation takes a universal shape independent of parameters. These results are relevant to bosonic gas in 1D optical lattices as well as to nonlinear optical waveguide arrays, which are used to demonstrate experimentally some of the features of this equilibrium state.

Original languageAmerican English
Article number233904
JournalPhysical Review Letters
Volume102
Issue number23
DOIs
StatePublished - 12 Jun 2009
Externally publishedYes

Fingerprint

Dive into the research topics of 'Universal correlations in a nonlinear periodic 1D system'. Together they form a unique fingerprint.

Cite this