Unsupervised Correlation Analysis

Yedid Hoshen, Lior Wolf

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

4 Scopus citations

Abstract

Linking between two data sources is a basic building block in numerous computer vision problems. In this paper, we set to answer a fundamental cognitive question: are prior correspondences necessary for linking between different domains? One of the most popular methods for linking between domains is Canonical Correlation Analysis (CCA). All current CCA algorithms require correspondences between the views. We introduce a new method Unsupervised Correlation Analysis (UCA), which requires no prior correspondences between the two domains. The correlation maximization term in CCA is replaced by a combination of a reconstruction term (similar to autoencoders), full cycle loss, orthogonality and multiple domain confusion terms. Due to lack of supervision, the optimization leads to multiple alternative solutions with similar scores and we therefore introduce a consensus-based mechanism that is often able to recover the desired solution. Remarkably, this suffices in order to link remote domains such as text and images. We also present results on well accepted CCA benchmarks, showing that performance far exceeds other unsupervised baselines, and approaches supervised performance in some cases.

Original languageEnglish
Title of host publicationProceedings - 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018
PublisherIEEE Computer Society
Pages3319-3328
Number of pages10
ISBN (Electronic)9781538664209
DOIs
StatePublished - 14 Dec 2018
Externally publishedYes
Event31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018 - Salt Lake City, United States
Duration: 18 Jun 201822 Jun 2018

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISSN (Print)1063-6919

Conference

Conference31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018
Country/TerritoryUnited States
CitySalt Lake City
Period18/06/1822/06/18

Bibliographical note

Publisher Copyright:
© 2018 IEEE.

Fingerprint

Dive into the research topics of 'Unsupervised Correlation Analysis'. Together they form a unique fingerprint.

Cite this