Abstract
Let Δ(d, n) be the maximum diameter of the graph of a d-dimensional polyhedron P with n-facets. It was conjectured by Hirsch in 1957 that Δ(d, n) depends linearly on n and d. However, all known upper bounds for Δ(d, n) were exponential in d. We prove a quasi-polynomial bound Δ(d, n)≤n2 log d+3. Let P be a d-dimensional polyhedron with n facets, let φ{symbol} be a linear objective function which is bounded on P and let v be a vertex of P. We prove that in the graph of P there exists a monotone path leading from v to a vertex with maximal φ{symbol}-value whose length is at most {Mathematical expression}.
Original language | English |
---|---|
Pages (from-to) | 363-372 |
Number of pages | 10 |
Journal | Discrete and Computational Geometry |
Volume | 8 |
Issue number | 1 |
DOIs | |
State | Published - Dec 1992 |