Using 3D reconstruction from image motion to predict total leaf area in dwarf tomato plants

Dmitrii Usenko, David Helman, Chen Giladi*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Accurate estimation of total leaf area (TLA) is essential for assessing plant growth, photosynthetic activity, and transpiration, but remains a challenge for bushy plants like dwarf tomatoes. Traditional destructive methods and imaging-based techniques often fall short due to labor intensity, plant damage, or the inability to capture complex canopies. This study evaluated a non-destructive method combining sequential 3D reconstructions from RGB images and machine learning to estimate TLA for three dwarf tomato cultivars—Mohamed, Hahms Gelbe Topftomate, and Red Robin—grown under controlled greenhouse conditions. Two experiments, conducted in spring–summer and autumn–winter, included 73 plants, yielding 418 TLA measurements using an “onion” approach, where layers of leaves were sequentially removed and scanned. High-resolution videos were recorded from multiple angles for each plant, and 500 frames were extracted per plant for 3D reconstruction. Point clouds were created and processed, four reconstruction algorithms (Alpha Shape, Marching Cubes, Poisson's, and Ball Pivoting) were tested, and meshes were evaluated using seven regression models: Multivariable Linear Regression (MLR), Lasso Regression (Lasso), Ridge Regression (Ridge-Reg), Elastic Net Regression (ENR), Random Forest (RF), extreme gradient boosting (XGBoost), and Multilayer Perceptron (MLP). The Alpha Shape reconstruction (α = 3) combined with XGBoost yielded the best performance, achieving an R2 of 0.80 and MAE of 489 cm2, with significant results across other model combinations. Results were lower when using data from different experiments as train and test datasets (R2 = 0.56 and MAE = 579 cm2). Feature importance analysis identified height, width, and surface area as the most predictive features. These findings demonstrate the robustness of our approach across variable environmental conditions and canopy structures. This scalable, automated TLA estimation method is particularly suited for urban farming and precision agriculture, offering practical implications for automated pruning, improved resource efficiency, and sustainable food production.

Original languageEnglish
Article number110627
JournalComputers and Electronics in Agriculture
Volume237
DOIs
StatePublished - Oct 2025

Bibliographical note

Publisher Copyright:
© 2025

Keywords

  • Dwarf tomato
  • Machine learning
  • Mesh reconstruction
  • Point cloud
  • Precision agriculture
  • Total leaf area

Fingerprint

Dive into the research topics of 'Using 3D reconstruction from image motion to predict total leaf area in dwarf tomato plants'. Together they form a unique fingerprint.

Cite this