TY - JOUR
T1 - Values of non-atomic vector measure games. Are they linear combinations of the measures?
AU - Hart, Sergiu
AU - Neyman, Abraham
PY - 1988
Y1 - 1988
N2 - Consider non-atomic vector measure games; i.e., games v of the form v = f{hook} {ring operator}(μ1,...,μn, where (μ1,...,μn) is a vector of non-atomic non-negative measures and f{hook} is a real-valued function defined on the range of (μ1,...,μn). Games of this form arise, for example, from production models and from finite-type markets. We show that the value of such a game need not be a linear combination of the measures μ1,...,μn (this is in contrast to all the values known to date). Moreover, this happens even for market games in pN A. In the economic models, thismeans that the value allocations are not necessarily generated by prices. All the examples we present are special cases of a new class of values.
AB - Consider non-atomic vector measure games; i.e., games v of the form v = f{hook} {ring operator}(μ1,...,μn, where (μ1,...,μn) is a vector of non-atomic non-negative measures and f{hook} is a real-valued function defined on the range of (μ1,...,μn). Games of this form arise, for example, from production models and from finite-type markets. We show that the value of such a game need not be a linear combination of the measures μ1,...,μn (this is in contrast to all the values known to date). Moreover, this happens even for market games in pN A. In the economic models, thismeans that the value allocations are not necessarily generated by prices. All the examples we present are special cases of a new class of values.
UR - http://www.scopus.com/inward/record.url?scp=38249032635&partnerID=8YFLogxK
U2 - 10.1016/0304-4068(88)90025-0
DO - 10.1016/0304-4068(88)90025-0
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:38249032635
SN - 0304-4068
VL - 17
SP - 31
EP - 40
JO - Journal of Mathematical Economics
JF - Journal of Mathematical Economics
IS - 1
ER -