Abstract
We study behavior of the critical O(N) vector model with quartic interaction in 2≤d≤6 dimensions to the next-to-leading order in the large-N expansion. We derive and perform consistency checks that provide an evidence for the existence of a nontrivial fixed point and explore the corresponding conformal field theory (CFT). In particular, we use conformal techniques to calculate the multiloop diagrams up to and including 4 loops in general dimension. These results are used to calculate a new CFT data associated with the three-point function of the Hubbard-Stratonovich field. In 6-ϵ dimensions our results match their counterparts obtained within a proposed alternative description of the model in terms of N+1 massless scalars with cubic interactions. In d=3 we find that the operator product expansion coefficient vanishes up to O(1/N3/2) order.
Original language | English |
---|---|
Article number | 025003 |
Journal | Physical Review D |
Volume | 102 |
Issue number | 2 |
DOIs | |
State | Published - 15 Jul 2020 |
Bibliographical note
Publisher Copyright:© 2020 authors. Published by the American Physical Society.