Vertical parallax from moving shadows

Yaron Caspi*, Michael Werman

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

20 Scopus citations

Abstract

This paper presents a method for capturing and computing 3D parallax. 3D parallax, as used here, refers to vertical offset from the ground plane, height. The method is based on analyzing shadows of vertical poles (e.g., a tall building's contour) that sweep the object. Unlike existing beam-scanning approaches, such as shadow or structured light, that recover the distance of a point from the camera, our approach measures the height from the ground plane directly. Previous methods compute the distance from the camera using triangulation between rays outgoing from the light-source and the camera. Such a triangulation is difficult when the objects are far from the camera, and requires accurate knowledge of the light source position. In contrast, our approach intersects two (unknown) planes generated separately by two casting objects. This omits the need to precompute the location of the light source. Furthermore, it allows a moving light source to be used. The proposed setup is particularly useful when the camera cannot directly face the scene or when the object is far away from the camera. A good example is an urban scene captured by a single webcam.

Original languageEnglish
Title of host publicationProceedings - 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2006
Pages2309-2315
Number of pages7
DOIs
StatePublished - 2006
Event2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2006 - New York, NY, United States
Duration: 17 Jun 200622 Jun 2006

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Volume2
ISSN (Print)1063-6919

Conference

Conference2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2006
Country/TerritoryUnited States
CityNew York, NY
Period17/06/0622/06/06

Fingerprint

Dive into the research topics of 'Vertical parallax from moving shadows'. Together they form a unique fingerprint.

Cite this