TY - GEN
T1 - Vertical parallax from moving shadows
AU - Caspi, Yaron
AU - Werman, Michael
PY - 2006
Y1 - 2006
N2 - This paper presents a method for capturing and computing 3D parallax. 3D parallax, as used here, refers to vertical offset from the ground plane, height. The method is based on analyzing shadows of vertical poles (e.g., a tall building's contour) that sweep the object. Unlike existing beam-scanning approaches, such as shadow or structured light, that recover the distance of a point from the camera, our approach measures the height from the ground plane directly. Previous methods compute the distance from the camera using triangulation between rays outgoing from the light-source and the camera. Such a triangulation is difficult when the objects are far from the camera, and requires accurate knowledge of the light source position. In contrast, our approach intersects two (unknown) planes generated separately by two casting objects. This omits the need to precompute the location of the light source. Furthermore, it allows a moving light source to be used. The proposed setup is particularly useful when the camera cannot directly face the scene or when the object is far away from the camera. A good example is an urban scene captured by a single webcam.
AB - This paper presents a method for capturing and computing 3D parallax. 3D parallax, as used here, refers to vertical offset from the ground plane, height. The method is based on analyzing shadows of vertical poles (e.g., a tall building's contour) that sweep the object. Unlike existing beam-scanning approaches, such as shadow or structured light, that recover the distance of a point from the camera, our approach measures the height from the ground plane directly. Previous methods compute the distance from the camera using triangulation between rays outgoing from the light-source and the camera. Such a triangulation is difficult when the objects are far from the camera, and requires accurate knowledge of the light source position. In contrast, our approach intersects two (unknown) planes generated separately by two casting objects. This omits the need to precompute the location of the light source. Furthermore, it allows a moving light source to be used. The proposed setup is particularly useful when the camera cannot directly face the scene or when the object is far away from the camera. A good example is an urban scene captured by a single webcam.
UR - http://www.scopus.com/inward/record.url?scp=33845569554&partnerID=8YFLogxK
U2 - 10.1109/CVPR.2006.328
DO - 10.1109/CVPR.2006.328
M3 - ???researchoutput.researchoutputtypes.contributiontobookanthology.conference???
AN - SCOPUS:33845569554
SN - 0769525970
SN - 9780769525976
T3 - Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
SP - 2309
EP - 2315
BT - Proceedings - 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2006
T2 - 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2006
Y2 - 17 June 2006 through 22 June 2006
ER -