Vesicle-associated Membrane Protein of Arabidopsis Suppresses Bax-induced Apoptosis in Yeast Downstream of Oxidative Burst

Alex Levine*, Beatrice Belenghi, Hila Damari-Weisler, David Granot

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

70 Scopus citations


Programmed cell death (PCD) in many systems is controlled by relative amounts of the apoptosis-regulating proteins Bax and Bcl-2 through homo- or heterodimerization. Here we show that Bax-induced PCD of yeast was suppressed by transformation with a vesicle-associated membrane protein from Arabidopsis (AtVAMP), which was isolated by screening a cDNA expression library against sugar-induced cell death in yeast. AtVAMP expression blocked Bax-induced PCD downstream of oxidative burst. AtVAMP also prevented H2O 2-induced apoptosis in yeast and in Arabidopsis cells. Reduced oxidation of lipids and plasma membrane proteins was detected in the AtVAMP-transformed yeast, suggesting improved membrane repair. Inhibition of intracellular vesicle trafficking by brefeldin A induced apoptosis from a sublethal concentration of H2O2. No protection occurred by overexpression of the yeast homolog SCN2. However, efficient suppression of yeast PCD occurred by expression of a chimeric gene, composed of the conserved domains from yeast, fused to the variable N-terminal domain from Arabidopsis, resulting in exchange of the proline-rich N-terminal domain of SCN2 with a proline-poor Arabidopsis sequence. Our results suggest that intracellular vesicle traffic can regulate execution of apoptosis by affecting the rate of membrane recycling and that the proline-rich N-terminal domain of VAMP inhibited this process.

Original languageAmerican English
Pages (from-to)46284-46289
Number of pages6
JournalJournal of Biological Chemistry
Issue number49
StatePublished - 7 Dec 2001


Dive into the research topics of 'Vesicle-associated Membrane Protein of Arabidopsis Suppresses Bax-induced Apoptosis in Yeast Downstream of Oxidative Burst'. Together they form a unique fingerprint.

Cite this