Abstract
We present a practical distillation approach to fine-tune LLMs for invoking tools in real-time applications. We focus on visual editing tasks; specifically, we modify images and videos by interpreting user stylistic requests, specified in natural language (“golden hour”), using an LLM to select the appropriate tools and their parameters to achieve the desired visual effect. We found that proprietary LLMs such as GPT-3.5-Turbo show potential in this task, but their high cost and latency make them unsuitable for real-time applications. In our approach, we fine-tune a (smaller) student LLM with guidance from a (larger) teacher LLM and behavioral signals. We introduce offline metrics to evaluate student LLMs. Both online and offline experiments show that our student models succeeded in matching the performance of our teacher model (GPT-3.5-Turbo), significantly reducing costs and latency. Lastly, we show that fine-tuning was improved by 25% in low-data regimes using augmentation.
Original language | English |
---|---|
Title of host publication | EMNLP 2024 - 2024 Conference on Empirical Methods in Natural Language Processing, Proceedings of the Industry Track |
Editors | Franck Dernoncourt, Daniel Preotiuc-Pietro, Anastasia Shimorina |
Publisher | Association for Computational Linguistics (ACL) |
Pages | 1286-1304 |
Number of pages | 19 |
ISBN (Electronic) | 9798891761667 |
State | Published - 2024 |
Event | 2024 Conference on Empirical Methods in Natural Language Processing, EMNLP 2024 - Hybrid, Miami, United States Duration: 12 Nov 2024 → 16 Nov 2024 |
Publication series
Name | EMNLP 2024 - 2024 Conference on Empirical Methods in Natural Language Processing, Proceedings of the Industry Track |
---|
Conference
Conference | 2024 Conference on Empirical Methods in Natural Language Processing, EMNLP 2024 |
---|---|
Country/Territory | United States |
City | Hybrid, Miami |
Period | 12/11/24 → 16/11/24 |
Bibliographical note
Publisher Copyright:© 2024 Association for Computational Linguistics.