Abstract
When video is shot in noisy environment, the voice of a speaker seen in the video can be enhanced using the visible mouth movements, reducing background noise. While most existing methods use audio-only inputs, improved performance is obtained with our visual speech enhancement, based on an audio-visual neural network. We include in the training data videos to which we added the voice of the target speaker as background noise. Since the audio input is not sufficient to separate the voice of a speaker from his own voice, the trained model better exploits the visual input and generalizes well to different noise types. The proposed model outperforms prior audio visual methods on two public lipreading datasets. It is also the first to be demonstrated on a dataset not designed for lipreading, such as the weekly addresses of Barack Obama.
Original language | English |
---|---|
Pages (from-to) | 1170-1174 |
Number of pages | 5 |
Journal | Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH |
Volume | 2018-September |
DOIs | |
State | Published - 2018 |
Event | 19th Annual Conference of the International Speech Communication, INTERSPEECH 2018 - Hyderabad, India Duration: 2 Sep 2018 → 6 Sep 2018 |
Bibliographical note
Publisher Copyright:© 2018 International Speech Communication Association. All rights reserved.
Keywords
- Speech enhancement
- Visual speech processing