TY - JOUR
T1 - Vive la différence III
AU - Shelah, Saharon
PY - 2008/8
Y1 - 2008/8
N2 - We show that, consistently, there is an ultrafilter ℱ on ω such that if Nn ℒ = (Pnℒ ∪ Qnℒ, Pnℒ, Q nℒ, Rnℒ) (for ℒ = 1, 2, n < ω), Pnℒ ∪ Qn ℒ ⊆ ω, and ∏n < ω N n1/ℱ ≡ ∏n < ω N n2/ℱ are models of the canonical theory t ind of the strong independence property, then every isomorphism from ∏n < ω Nn1/ℱ onto ∏n < ω Nn2/ℱ is a product isomorphism.
AB - We show that, consistently, there is an ultrafilter ℱ on ω such that if Nn ℒ = (Pnℒ ∪ Qnℒ, Pnℒ, Q nℒ, Rnℒ) (for ℒ = 1, 2, n < ω), Pnℒ ∪ Qn ℒ ⊆ ω, and ∏n < ω N n1/ℱ ≡ ∏n < ω N n2/ℱ are models of the canonical theory t ind of the strong independence property, then every isomorphism from ∏n < ω Nn1/ℱ onto ∏n < ω Nn2/ℱ is a product isomorphism.
UR - http://www.scopus.com/inward/record.url?scp=58449083907&partnerID=8YFLogxK
U2 - 10.1007/s11856-008-1020-3
DO - 10.1007/s11856-008-1020-3
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:58449083907
SN - 0021-2172
VL - 166
SP - 61
EP - 96
JO - Israel Journal of Mathematics
JF - Israel Journal of Mathematics
ER -