TY - JOUR
T1 - Water-soluble and solid-state speciation of phosphorus in stabilized sewage sludge
AU - Huang, Xiao Lan
AU - Shenker, Moshe
PY - 2004
Y1 - 2004
N2 - Three chemicals, ferrous sulfate (Fe-sul), calcium oxide (CaO), and aluminum sulfate (alum), were used to stabilize phosphorus (P) in fresh, anaerobically digested sewage sludge (FSS). The chemically stabilized sludge materials and biosolids compost (BSC) were compared with the FSS with respect to water-soluble phosphorus (WSP) content in its inorganic (WSPi) and organic (WSPo) forms as well as water-soluble organic carbon (DOC). Solid-state P speciation was further probed by X-ray diffraction (XRD) and scanning electron microscopy (SEM) equipped with energy-dispersive X-ray elemental spectrometry (EDXS). Water-soluble P was effectively controlled by a wide range of Fe-sul or CaO additions to the sludge (Ca to P ratio = 3.47-17.72, Fe to P ratio = 1.01-16.53), but by only a narrow range (Al to P ratio = 1.04-2.87) of alum addition. The WSP content in the BSC was also depressed, but to a lesser extent. The pH in the treated sludge ranged from 3.0 to 12.5 and served as a key factor to control P chemistry. No correlation was observed between DOC and WSPo. No crystallized Ca-P minerals were detected in the CaO-stabilized sludge, but brushite crystallization seemed to be obtained by low addition of Fe-sul and alum. Variscite and strengite crystallization was obtained following high addition of Fe-sul or alum, as detected by XRD and SEM-EDXS. Adsorption of P by newly formed Fe-hydroxide seems to play an important role in the Fe-sul-stabilized sludge. We concluded that administration of the tested chemicals at the proper rate can effectively reduce the hazard of P release and leaching from sludge.
AB - Three chemicals, ferrous sulfate (Fe-sul), calcium oxide (CaO), and aluminum sulfate (alum), were used to stabilize phosphorus (P) in fresh, anaerobically digested sewage sludge (FSS). The chemically stabilized sludge materials and biosolids compost (BSC) were compared with the FSS with respect to water-soluble phosphorus (WSP) content in its inorganic (WSPi) and organic (WSPo) forms as well as water-soluble organic carbon (DOC). Solid-state P speciation was further probed by X-ray diffraction (XRD) and scanning electron microscopy (SEM) equipped with energy-dispersive X-ray elemental spectrometry (EDXS). Water-soluble P was effectively controlled by a wide range of Fe-sul or CaO additions to the sludge (Ca to P ratio = 3.47-17.72, Fe to P ratio = 1.01-16.53), but by only a narrow range (Al to P ratio = 1.04-2.87) of alum addition. The WSP content in the BSC was also depressed, but to a lesser extent. The pH in the treated sludge ranged from 3.0 to 12.5 and served as a key factor to control P chemistry. No correlation was observed between DOC and WSPo. No crystallized Ca-P minerals were detected in the CaO-stabilized sludge, but brushite crystallization seemed to be obtained by low addition of Fe-sul and alum. Variscite and strengite crystallization was obtained following high addition of Fe-sul or alum, as detected by XRD and SEM-EDXS. Adsorption of P by newly formed Fe-hydroxide seems to play an important role in the Fe-sul-stabilized sludge. We concluded that administration of the tested chemicals at the proper rate can effectively reduce the hazard of P release and leaching from sludge.
UR - http://www.scopus.com/inward/record.url?scp=4544359259&partnerID=8YFLogxK
U2 - 10.2134/jeq2004.1895
DO - 10.2134/jeq2004.1895
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 15356251
AN - SCOPUS:4544359259
SN - 0047-2425
VL - 33
SP - 1895
EP - 1903
JO - Journal of Environmental Quality
JF - Journal of Environmental Quality
IS - 5
ER -