Weakly compact cardinals and nonspecial aronszajn trees

Saharon Shelah, Lee Stanley

Research output: Contribution to journalArticlepeer-review

16 Scopus citations

Abstract

LEMMA 1. If λ i;…ardinal with cf λ > ω, then □x implies that there i;…#x03BB;+-Aronszajn tree with an ω-ascent path, i.e;…equence (xα: α < λ+) with each xα;…xαn;…#x003C; ω…ne-to-one sequence from Tα, such that for all α < β < λ+, xαn precedes xβn, in the tree order for sufficiently large n. LEMMA 2. If λ i;…ardinal with cf λ…#x03C9; < λ, then □x implies that there i;…#x03BB;+-Aronszajn tree with an ω1-ascent path (replace ω by ωi, above). LEMMA 3. If λ is an uncountable cardinal;…s regular;…#x003C; λ, cf λ ≠ k;…s aλ+ -Aronszajn tree, and (xαi;…#x003C; k) i;…ne-to-one sequence from Tζ(α) with the property of ascent paths, where ζ: λ+ ⟶λ+ i;…onotone increasing function of α, the;…s nonspecial. THEOREM 4. If λ is uncountable, then □λ implies that there i;…onspecial λ+-Aronszajn tree. THEOREM 5. If λ is an uncountable cardinal;… λ+, an;…s not (weakly compact)L, then there i;…onspecial K-Aronszajn tree.

Original languageEnglish
Pages (from-to)887-897
Number of pages11
JournalProceedings of the American Mathematical Society
Volume104
Issue number3
DOIs
StatePublished - 1 Nov 1988

Fingerprint

Dive into the research topics of 'Weakly compact cardinals and nonspecial aronszajn trees'. Together they form a unique fingerprint.

Cite this