TY - JOUR
T1 - Weakly compact cardinals and nonspecial aronszajn trees
AU - Shelah, Saharon
AU - Stanley, Lee
PY - 1988/11/1
Y1 - 1988/11/1
N2 - LEMMA 1. If λ i;…ardinal with cf λ > ω, then □x implies that there i;…#x03BB;+-Aronszajn tree with an ω-ascent path, i.e;…equence (xα: α < λ+) with each xα;…xαn;…#x003C; ω…ne-to-one sequence from Tα, such that for all α < β < λ+, xαn precedes xβn, in the tree order for sufficiently large n. LEMMA 2. If λ i;…ardinal with cf λ…#x03C9; < λ, then □x implies that there i;…#x03BB;+-Aronszajn tree with an ω1-ascent path (replace ω by ωi, above). LEMMA 3. If λ is an uncountable cardinal;…s regular;…#x003C; λ, cf λ ≠ k;…s aλ+ -Aronszajn tree, and (xαi;…#x003C; k) i;…ne-to-one sequence from Tζ(α) with the property of ascent paths, where ζ: λ+ ⟶λ+ i;…onotone increasing function of α, the;…s nonspecial. THEOREM 4. If λ is uncountable, then □λ implies that there i;…onspecial λ+-Aronszajn tree. THEOREM 5. If λ is an uncountable cardinal;… λ+, an;…s not (weakly compact)L, then there i;…onspecial K-Aronszajn tree.
AB - LEMMA 1. If λ i;…ardinal with cf λ > ω, then □x implies that there i;…#x03BB;+-Aronszajn tree with an ω-ascent path, i.e;…equence (xα: α < λ+) with each xα;…xαn;…#x003C; ω…ne-to-one sequence from Tα, such that for all α < β < λ+, xαn precedes xβn, in the tree order for sufficiently large n. LEMMA 2. If λ i;…ardinal with cf λ…#x03C9; < λ, then □x implies that there i;…#x03BB;+-Aronszajn tree with an ω1-ascent path (replace ω by ωi, above). LEMMA 3. If λ is an uncountable cardinal;…s regular;…#x003C; λ, cf λ ≠ k;…s aλ+ -Aronszajn tree, and (xαi;…#x003C; k) i;…ne-to-one sequence from Tζ(α) with the property of ascent paths, where ζ: λ+ ⟶λ+ i;…onotone increasing function of α, the;…s nonspecial. THEOREM 4. If λ is uncountable, then □λ implies that there i;…onspecial λ+-Aronszajn tree. THEOREM 5. If λ is an uncountable cardinal;… λ+, an;…s not (weakly compact)L, then there i;…onspecial K-Aronszajn tree.
UR - http://www.scopus.com/inward/record.url?scp=84865657138&partnerID=8YFLogxK
U2 - 10.1090/S0002-9939-1988-0964870-5
DO - 10.1090/S0002-9939-1988-0964870-5
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:84865657138
SN - 0002-9939
VL - 104
SP - 887
EP - 897
JO - Proceedings of the American Mathematical Society
JF - Proceedings of the American Mathematical Society
IS - 3
ER -