What makes a good model of natural images?

Yair Weiss*, William T. Freeman

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

270 Scopus citations

Abstract

Many low-level vision algorithms assume a prior probability over images, and there has been great interest in trying to learn this prior from examples. Since images are very non Gaussian, high dimensional, continuous signals, learning their distribution presents a tremendous computational challenge. Perhaps the most successful recent algorithm is the Fields of Experts (FOE) [20] model which has shown impressive performance by modeling image statistics with a product of potentials defined on filter outputs. However, as in previous models of images based on filter outputs [30], calculating the probability of an image given the model requires evaluating an intractable partition function. This makes learning very slow (requires Monte-Carlo sampling at every step) and makes it virtually impossible to compare the likelihood of two different models. Given this computational difficulty, it is hard to say whether nonintuitive features learned by such models represent a true property of natural images or an artifact of the approximations used during learning. In this paper we present (1) tractable lower and upper bounds on the partition function of models based on filter outputs and (2) efficient learning algorithms that do not require any sampling. Our results are based on recent results in machine learning that deal with Gaussian potentials. We extend these results to non-Gaussian potentials and derive a novel, basis rotation algorithm for approximating the maximum likelihood filters. Our results allow us to (1) rigorously compare the likelihood of different models and (2) calculate high likelihood models of natural image statistics in a matter of minutes. Applying our results to previous models shows that the nonintuitive feature s are not an artifact of the learning process but rather are capturing robust properties of natural images.

Original languageEnglish
Title of host publication2007 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR'07
DOIs
StatePublished - 2007
Event2007 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR'07 - Minneapolis, MN, United States
Duration: 17 Jun 200722 Jun 2007

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISSN (Print)1063-6919

Conference

Conference2007 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR'07
Country/TerritoryUnited States
CityMinneapolis, MN
Period17/06/0722/06/07

Fingerprint

Dive into the research topics of 'What makes a good model of natural images?'. Together they form a unique fingerprint.

Cite this