Abstract
We present a method for determining which facial parts (mouth, nose, etc.) best characterize an individual, given a set of that individual's portraits. We introduce a novel distinctiveness analysis of a set of portraits, which leverages the deep features extracted by a pre-trained face recognition CNN and a hair segmentation FCN, in the context of a weakly supervised metric learning scheme. Our analysis enables the generation of a polarized class activation map (PCAM) for an individual's portrait via a transformation that localizes and amplifies the discriminative regions of the deep feature maps extracted by the aforementioned networks. A user study that we conducted shows that there is a surprisingly good agreement between the face parts that users indicate as characteristic and the face parts automatically selected by our method. We demonstrate a few applications of our method, including determining the most and the least representative portraits among a set of portraits of an individual, and the creation of facial hybrids: portraits that combine the characteristic recognizable facial features of two individuals. Our face characterization analysis is also effective for ranking portraits in order to find an individual's look-alikes (Doppelgängers).
Original language | English |
---|---|
Pages (from-to) | 405-416 |
Number of pages | 12 |
Journal | Computer Graphics Forum |
Volume | 38 |
Issue number | 2 |
DOIs | |
State | Published - May 2019 |
Bibliographical note
Publisher Copyright:© 2019 The Author(s) Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
Keywords
- CCS Concepts
- Computing methodologies → Neural networks
- Image processing
- face recognition
- facial hybrids
- feature polarization
- neural networks