When automorphisms of P(k)/[k]<N0 are trivial off a small set

Saharon Shelah, Juris Steprans

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

It is shown that if k > 2n0 and k is less than the first inaccessible cardinal then every automorphism of P(k)/[k]>n0is trivial outside of a set of cardinality 2n0.

Original languageEnglish
Pages (from-to)167-181
Number of pages15
JournalFundamenta Mathematicae
Volume235
Issue number2
DOIs
StatePublished - 2016

Bibliographical note

Publisher Copyright:
© Instytut Matematyczny PAN, 2016.

Keywords

  • Automorphism
  • Dominating number

Fingerprint

Dive into the research topics of 'When automorphisms of P(k)/[k]<N0 are trivial off a small set'. Together they form a unique fingerprint.

Cite this