Abstract
We study the impact of certain identities and probabilistic identities on the structure of finite groups. More specifically, let w be a nontrivial word in d distinct variables and let G be a finite group for which the word map wG: Gd → G has a fiber of size at least ρ|G|d for some fixed ρ < 0. We show that, for certain words w, this implies that G has a normal solvable subgroup of index bounded above in terms of w and ρ. We also show that, for a larger family of words w, this implies that the nonsolvable length of G is bounded above in terms of w and ρ, thus providing evidence in favor of a conjecture of Larsen. Along the way we obtain results of independent interest on permutation groups; e.g. we show, roughly, that most elements of large finite permutation groups have large support.
Original language | American English |
---|---|
Pages (from-to) | 93-112 |
Number of pages | 20 |
Journal | Journal of Combinatorial Algebra |
Volume | 5 |
Issue number | 2 |
DOIs | |
State | Published - 1 May 2021 |
Bibliographical note
Funding Information:The first author was supported by the Austrian Science Fund (FWF), project J4072-N32 “Affine maps on finite groups”. The second author acknowledges the support of ISF grant 686/17, BSF grant 2016072 and the Vinik chair of mathematics which he holds.
Publisher Copyright:
© 2021 European Mathematical Society.
Keywords
- Finite groups
- Identities
- Nonsolvable length
- Probabilistic identities
- Word maps